Hi Fabian, You my find my discussion of "types" of SS helpful. My website has been down for some time, but you can retrieve it from http://psychology.okstate.edu/faculty/jgrice/psyc5314/SS_types.pdf among other places.
Best, Ista On Thu, May 12, 2011 at 10:33 AM, Fabian <fabian_ro...@gmx.de> wrote: > #subject: type III sum of squares - anova() Anova() AnovaM() > #R-version: 2.12.2 > > #Hello everyone, > > #I am currently evaluating experimental data of a two factor > experiment. to illustrate de my problem I will use following #dummy > dataset: Factor "T1" has 3 levels ("A","B","C") and factor "T2" has 2 > levels "E" and "F". The design is #completly balanced, each factor > combinations has 4 replicates. > > #the dataset looks like this: > > T1<-(c(rep(c("A","B","C"),each=8))) > T2<-(c(rep(rep(c("E","F"),each=4),3))) > RESPONSE<-c(1,2,3,2,2,1,3,2,9,8,8,9,6,5,5,6,5,5,5,6,1,2,3,3) > DF<-as.data.frame(cbind(T1,T2,RESPONSE)) > DF$RESPONSE<-as.numeric(DF$RESPONSE) > > > DF > T1 T2 RESPONSE > 1 A E 1 > 2 A E 2 > 3 A E 3 > 4 A E 2 > 5 A F 2 > 6 A F 1 > 7 A F 3 > 8 A F 2 > 9 B E 7 > 10 B E 6 > 11 B E 6 > 12 B E 7 > 13 B F 5 > 14 B F 4 > 15 B F 4 > 16 B F 5 > 17 C E 4 > 18 C E 4 > 19 C E 4 > 20 C E 5 > 21 C F 1 > 22 C F 2 > 23 C F 3 > 24 C F 3 > > library(biology) > replications(RESPONSE ~ T1*T2,data=DF) > T1 T2 T1:T2 > 8 12 4 > is.balanced(RESPONSE ~ T1*T2,data=DF) > [1] TRUE > > > #Now I would like to know whether T1, T2 or T1*T2 have a significant > effect on RESPONSE. As far as I know, the #theory says that I should use > a type III sum of squares, but the theory also says that if the design > is completely #balanced, there is no difference between type I,II or III > sum of squares. > > #so I first fit a linear model: > > my.anov<-lm(RESPONSE~T1+T2+T1:T2) > > #then I do a normal Anova > > > anova(my.anov) > > Analysis of Variance Table > > Response: RESPONSE > Df Sum Sq Mean Sq F value Pr(>F) > T1 2 103.0 51.500 97.579 2.183e-10 *** > T2 1 24.0 24.000 45.474 2.550e-06 *** > T1:T2 2 12.0 6.000 11.368 0.000642 *** > Residuals 18 9.5 0.528 > > #When I do the same with the Anova() function from the "car" package I > get the same result > > Anova(my.anov) > > Anova Table (Type II tests) > > Response: RESPONSE > Sum Sq Df F value Pr(>F) > T1 103.0 2 97.579 2.183e-10 *** > T2 24.0 1 45.474 2.550e-06 *** > T1:T2 12.0 2 11.368 0.000642 *** > Residuals 9.5 18 > > #(type two sees to be the default and type="I" produces an error (why?)) > > #yet, when I specify type="III" it gives me something completely different: > > Anova(my.anov,type="III") > Anova Table (Type III tests) > > Response: RESPONSE > Sum Sq Df F value Pr(>F) > (Intercept) 16.0 1 30.316 3.148e-05 *** > T1 84.5 2 80.053 1.100e-09 *** > T2 0.0 1 0.000 1.000000 > T1:T2 12.0 2 11.368 0.000642 *** > Residuals 9.5 18 > > #an the AnovaM() function from the "biology" package does the same for > type I and II and produces the following #result: > > library(biology) > AnovaM(my.anov,type="III") > Df Sum Sq Mean Sq F value Pr(>F) > T1 2 84.5 42.250 80.053 1.10e-09 *** > T2 1 24.0 24.000 45.474 2.55e-06 *** > T1:T2 2 12.0 6.000 11.368 0.000642 *** > Residuals 18 9.5 0.528 > > #Is type 3 the Type I should use and why do the results differ if the > design is balanced? I am really confused, it would #be great if someone > could help me out! > > #Thanks a lot for your help! > > #/Fabian > #University of Gothenburg > > > > > > > > > > > > > > > > > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > -- Ista Zahn Graduate student University of Rochester Department of Clinical and Social Psychology http://yourpsyche.org ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.