Hello, How can i scale my time series in a way that 90% of the data is in the -0.-9/ +0.9 range?
My approach is to first build a clean vector without those 10% far away from the mean require(outliers) y<-rep(c(1,1,1,1,1,9),10) yc<-y ycc<-length(y)*0.1 for(j in 1:ycc) { cat("Remove",j) yc<-rm.outlier(yc) } and then do my scaling based on the cleaned data for(k in 1:length(y)) { y[k]<-(((y[k]-min(yc))/(max(yc)-min(yc)))*1.8)-0.9 } This works fine for the first three loops, but then strangely crashes : ( Remove 1Remove 2Remove 3Error in if (xor(((max(x, na.rm = TRUE) - mean(x, na.rm = TRUE)) < (mean(x, : missing value where TRUE/FALSE needed In addition: Warning messages: 1: In max(x, na.rm = TRUE) : no non-missing arguments to max; returning -Inf 2: In min(x, na.rm = TRUE) : no non-missing arguments to min; returning Inf Any ideas for me? Thanks in advance, Mr. Q ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.