I tried using JMP for the same and get two distinct recommendations when using the unscaled values.
When using the unscaled values, Log Normal appears to be best fit. fitdist in R is unable to provide a fit in this case. Compare Distributions Show Distribution Number of Parameters -2*LogLikelihood AICc X LogNormal 2 1016.29587 1020.50639 Johnson Sl 3 1015.21183 1021.6404 GLog 3 1016.29587 1022.72444 Exponential 1 1021.58662 1023.65559 Johnson Su 4 1015.21183 1023.9391 Gamma 2 1021.02475 1025.23528 Weibull 2 1021.50762 1025.71815 Extreme Value 2 1021.50762 1025.71815 Normal 2 Mixture 5 1042.55455 1053.66566 Normal 3 Mixture 8 1042.74433 1061.56786 Normal 2 1082.36992 1086.58045 However, when using the scaled values, Gamma appears to be best fit. I am getting the same using R as well. Compare Distributions Show Distribution Number of Parameters -2*LogLikelihood AICc X Gamma 2 -114.92911 -110.71858 Weibull 2 -113.54302 -109.3325 Extreme Value 2 -113.54302 -109.3325 Exponential 1 -108.01019 -105.94122 Johnson Sl 3 -104.69191 -98.263335 Johnson Su 4 -104.69191 -95.964634 GLog 3 -102.35037 -95.921798 LogNormal 2 -70.727608 -66.517082 Normal 2 Mixture 5 -77.349192 -66.238081 Normal 3 Mixture 8 -77.159407 -58.335878 Normal 2 -37.533813 -33.323287 What is the difference between the MLE methods in JMP and R??? Is it advisable to go with the scaled values in R??? Thank you. Ravi -- View this message in context: http://r.789695.n4.nabble.com/Fitting-gamma-and-exponential-Distributions-with-fitdist-tp3477391p3480422.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.