On Sat, Apr 9, 2011 at 5:14 AM, mathijsdevaan <mathijsdev...@gmail.com> wrote: > Hi, > > I need to perform calculations on subsets of a data frame: > > DF = data.frame(read.table(textConnection(" A B C D E F > 1 a 1995 0 4 1 > 2 a 1997 1 1 3 > 3 b 1995 3 7 0 > 4 b 1996 1 2 3 > 5 b 1997 1 2 3 > 6 b 1998 6 0 0 > 7 b 1999 3 7 0 > 8 c 1997 1 2 3 > 9 c 1998 1 2 3 > 10 c 1999 6 0 0 > 11 d 1999 3 7 0 > 12 e 1995 1 2 3 > 13 e 1998 1 2 3 > 14 e 1999 6 0 0"),head=TRUE,stringsAsFactors=FALSE)) > > I'd like to create new dataframes for each unique year in which for each > value of A, the values of D, E and F are summed over the last 3 years (e.g. > 1998 = 1998, 1997, 1996): > Question 1: How do I go from DF to newDFyear? > > Examples: > > newDF1995 > B D E F > a 0 4 1 > b 3 7 0 > e 1 2 3 > > newDF1998 > B D E F > a 1 1 3 > b 8 4 6 > c 2 4 6 > e 1 2 3 > > Then, for each new DF I need to generate a square matrix after doing the > following: > > newDF1998$G<-newDF1998$D + newDF1998$E + newDF1998$F > newDF1998$D<-newDF1998$D/newDF1998$G > newDF1998$E<-newDF1998$E/newDF1998$G > newDF1998$F<-newDF1998$F/newDF1998$G > newDF1998<-NewDF1998[,c(-5)] > > newDF1998 > B D E F > a 0.2 0.2 0.6 > b 0.4 0.2 0.3 > c 0.2 0.3 0.5 > e 0.2 0.3 0.5 > > Question 2: How do I go from newDF1998 to a matrix > > a b c e > a > b > c > e > > in which Cell ab = (0.2*0.4 + 0.2*0.2 + 0.6*0.3)/((0.2*0.2 + 0.2*0.2 + > 0.6*0.6)^0.5) * ((0.4*0.4 + 0.2*0.2 + 0.3*0.3)^0.5) = 0.84
First we use read.zoo to reform DF into a multivariate time series and use rollapply (where we have used the devel version of zoo since it supports the partial= argument on rollapply). We then reform each resulting row into a matrix converting each row of each matrix to proportions. Finally we form the desired scaled cross product. # devel version of zoo install.packages("zoo", repos = "http://r-forge.r-project.org") library(zoo) z <- read.zoo(DF, split = 2, index = 3, FUN = identity) sum.na <- function(x) if (any(!is.na(x))) sum(x, na.rm = TRUE) else NA r <- rollapply(z, 3, sum.na, align = "right", partial = TRUE) newDF <- lapply(1:nrow(r), function(i) prop.table(na.omit(matrix(r[i,], nc = 4, byrow = TRUE, dimnames = list(unique(DF$B), names(DF)[-2:-3]))[, -1]), 1)) names(newDF) <- time(z) lapply(mats, function(mat) tcrossprod(mat / sqrt(rowSums(mat^2)))) -- Statistics & Software Consulting GKX Group, GKX Associates Inc. tel: 1-877-GKX-GROUP email: ggrothendieck at gmail.com ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.