*H*i, I am trying to fit a GEE model with *geeglm* function. The model is the following:
Modelo<-geeglm(sqrt ~Tra+ Mes, id=Lugar , data=datos, family=gaussian(identity), corstr="independence") *Tra( is a experimental treatment, 2 levels)*, *Mes* (is the month of take data, 4 levels) and *Lugar* (is the site of study, 3 levels) are categorical variables and *sqrt* (sqrt of Total Carbon on soil) it's a continuous variable. I want to know if *sqrt* can be to explained for *Tra* and *Mes*when measures among sites (*Lugar*) are repeated measures. I get this outpout summary (A) and anova (B). (A) Call:geeglm(formula = sqrt~ Tra + Mes, family = gaussian(identity), data = datos, id = Lugar, corstr ="independence") Coefficients: Estimate Std.err Wald Pr(>|W|) (Intercept) 4.6733 0.7007 44.48 2.6e-11 *** TraT1 -0.2155 0.0748 8.30 0.004 ** Mes2 -0.0159 0.0699 0.05 0.820 Mes3 -0.0596 0.1441 0.17 0.679 Mes4 -0.1581 0.0373 17.99 2.2e-05 *** Estimated Scale Parameters: Estimate Std.err (Intercept) 1.33 0.165 (B) Analysis of 'Wald statistic' Table Model: gaussian, link: identity Response: sqrt Terms added sequentially (first to last) Df X2 P(>|Chi|) Tra 1 9.00e+00 0.0025 ** Mes 3 -1.37e+14 1.0000 The convectional ANOVA analysis with repeated measures give *p* values of both between groups (cofactors: *Tra* and *Mes*) and intra groups (levels of *Lugar*). When i try to fit the following model for know the wald and p values of the *Lugar*'s levels I get strangers p and wald values with summary function (A) and its impossible to run the anova function (B). modelo<-geeglm(sqrt~Tra+ Lugar+ Mes, id=Lugar ,data=datos, family=gaussian(identity), corstr ="independence") (A) Call:geeglm(formula = sqrt~ Tra + Lugar + Mes, family = gaussian(identity), data = datos, id = Lugar, corstr ="independence") Coefficients: Estimate Std.err Wald Pr(>|W|) (Intercept) 3.23291 0.00000 Inf <2e-16 *** TraT1 -0.23229 0.00000 Inf <2e-16 *** Lugar2 1.97880 0.00000 Inf <2e-16 *** Lugar3 2.31549 0.00000 Inf <2e-16 *** Mes2 0.00147 0.00000 Inf <2e-16 *** Mes3 -0.04217 0.00000 Inf <2e-16 *** Mes4 -0.22612 0.00000 Inf <2e-16 *** --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Estimated Scale Parameters: Estimate Std.err (Intercept) 0.309 0.0818 (B) anova(modelo) Error en solve.default(vbeta[zeroidx, zeroidx, drop = FALSE]) : rutina Lapack dgesv: sistema es exactamente singular Its so necessary for me get this comparisons too. Please, I appreciate if you can help me. Marylin Bejarano pH student Instituto de Ecología-UNAM [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.