Michael -
   I think this does what you want:

helm.raw <- 
read.table("http://euclid.psych.yorku.ca/datavis/Private/mdshelm.dat",header=TRUE, 
row.names=1)
trans = 
c('A'='RPur','C'='Red','E'='Yel','G'='Gy1','I'='Gy2','K'='Green','M'='Blue','O'='BlP','Q'='Pur1','S'='Pur2')
cnames = do.call(rbind,strsplit(rownames(helm.raw), ""))
cnames = apply(cnames,2,function(x)trans[x])
uu = unique(as.vector(cnames))
onecol = function(col){
   themat = matrix(NA,10,10)
   dimnames(themat) = list(uu,uu)
   themat[cnames] = col
   as.dist(t(themat))
}

result = lapply(as.data.frame(helm.raw),onecol)

result$CD1
      RPur  Red  Yel  Gy1  Gy2 Green Blue  BlP Pur1
Red 11.5 Yel 13.1 6.0 Gy1 12.6 7.9 6.2 Gy2 10.6 8.4 8.4 5.2 Green 10.6 9.4 9.9 6.5 4.1 Blue 10.8 10.2 10.3 8.8 7.0 6.4 BlP 7.3 11.3 12.7 11.2 10.4 9.9 4.2 Pur1 5.4 11.5 12.9 11.7 10.8 9.4 8.4 4.5 Pur2 5.0 11.5 10.7 10.2 10.6 10.1 8.1 6.4 3.0
                                        - Phil Spector
                                         Statistical Computing Facility
                                         Department of Statistics
                                         UC Berkeley
                                         spec...@stat.berkeley.edu



On Tue, 22 Mar 2011, Michael Friendly wrote:

I have a 45 x 16 data frame consisting of dissimilarities among 10 colors, giving in each column the 45 = 10*9/2 pairwise judgments for one of 16 subjects. The rownames identify each pair of colors, e.g, "AC" = ("A","C"), and the pairs are ordered by columns
in the lower triangle of each distance matrix.

helm.raw <-
read.table("http://euclid.psych.yorku.ca/datavis/Private/mdshelm.dat";, header=TRUE, row.names=1)
head(helm.raw)
N1 N2 N3 N4 N5 N6a N6b N7 N8 N9 N10 CD1 CD2a CD2b CD3 CD4 AC 6.8 5.9 7.1 7.5 6.6 5.2 5.8 6.2 7.5 6.0 9.2 11.5 9.3 9.0 10.4 9.9 AE 12.5 11.1 10.2 10.3 10.5 9.4 10.5 10.8 9.1 9.4 10.8 13.1 10.7 10.0 12.4 13.2 AG 13.8 18.8 11.1 10.7 10.2 11.4 13.4 9.9 10.2 9.5 9.7 12.6 10.7 10.4 12.8 12.3 AI 14.2 17.3 12.5 11.6 9.6 13.3 14.0 11.1 12.1 9.5 10.1 10.6 11.9 10.0 13.7 11.1 AK 12.5 16.6 11.8 10.6 10.8 12.0 13.2 10.3 12.5 9.8 10.3 10.6 11.0 9.3 11.8 8.7 AM 11.0 16.5 9.9 9.7 9.7 12.3 11.7 8.8 9.7 8.7 9.7 10.8 9.8 8.6 4.3 5.6
row.names(helm.raw)
[1] "AC" "AE" "AG" "AI" "AK" "AM" "AO" "AQ" "AS" "CE" "CG" "CI" "CK" "CM" "CO" "CQ" "CS" "EG" "EI" "EK" [21] "EM" "EO" "EQ" "ES" "GI" "GK" "GM" "GO" "GQ" "GS" "IK" "IM" "IO" "IQ" "IS" "KM" "KO" "KQ" "KS" "MO"
[41] "MQ" "MS" "OQ" "OS" "QS"
To analyse this (with individual differences MDS, e.g., smacofDiff()), I need 
to:
(a) convert this to a list of objects of class "dist", one for each column of 
helm.raw
(b) rename the 1-letter codes to color name abbreviations as row/col labels 
for each distance matrix,
according to:
 'A'='RPur'
 'C'='Red'
 'E'='Yel'
 'G'='Gy1'
 'I'='Gy2'
 'K'='Green'
 'M'='Blue'
 'O'='BlP'
 'Q'='Pur1'
 'S'='Pur2'

I've done this in SAS, but I don't know how to do it in R because neither dist() nor as.dist() seem to be able to work with data in this format. I could try brute-force,
but maybe there is an easier way.  Can someone help?

As a distance matrix, the column helm.raw$CD1 for subject CD1 should appear something like
shown below (without the Obs column, where stim is the rowname)

--------------------------------- Subject=CD1 ----------------------------------
    Obs  stim   RPur   Red   Yel   Gy1   Gy2  Green  Blue  BlP  Pur1  Pur2

      1  RPur     .     .     .     .     .      .     .    .     .     .
      2  Red    11.5    .     .     .     .      .     .    .     .     .
      3  Yel    13.1   6.0    .     .     .      .     .    .     .     .
      4  Gy1    12.6   7.9   6.2    .     .      .     .    .     .     .
      5  Gy2    10.6   8.4   8.4   5.2    .      .     .    .     .     .
      6  Green  10.6   9.4   9.9   6.5   4.1     .     .    .     .     .
      7  Blue   10.8  10.2  10.3   8.8   7.0    6.4    .    .     .     .
      8  BlP     7.3  11.3  12.7  11.2  10.4    9.9   4.2   .     .     .
      9  Pur1    5.4  11.5  12.9  11.7  10.8    9.4   8.4  4.5    .     .
     10  Pur2    5.0  11.5  10.7  10.2  10.6   10.1   8.1  6.4    3     .


--
Michael Friendly     Email: friendly AT yorku DOT ca
Professor, Psychology Dept.
York University      Voice: 416 736-5115 x66249 Fax: 416 736-5814
4700 Keele Street    Web:   http://www.datavis.ca
Toronto, ONT  M3J 1P3 CANADA

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to