Thank you in advance for helping me with this. I included a part of the actual data. The result of pred.est and pred.est1are different, but they should be identical. For pred.est, I entered the slope and y intercept and received a value for each individual number in the matrix (Z). For pred.est1, I was wanting R to do this for me and it seems that it combined values within each row of the matrix (Z), this was indicated by the both the row numbers and pred.est1 = 30.
rm(list=ls()) #Water w = c(9.037929, 8.273594, 9.253578, 8.039490, 8.381091, 11.610205, 11.261445, 11.185045, 9.903959, 12.307910, 10.307602, 13.950863, 13.028331, 13.677622, 13.051269, 13.289698, 14.391914, 21.411512, 75.568802, 78.168239, 60.829664, 112.558057, 127.296835, 108.739532, 133.516712, 130.492614, 129.783800, 168.289704, 152.732359, 168.405646) #Resistance R=c(660, 548, 676, 763, 768, 692, 657, 630, 748, 680, 786, 645, 710, 677, 692, 732, 737, 651, 396, 601, 640, 448, 464, 472, 434, 487, 495, 426, 429, 456) #Detector length Lend=c(37.0, 39.0, 39.0, 39.0, 40.0, 41.5, 44.0, 45.0, 46.0, 47.0, 47.0, 48.0, 48.5, 49.0, 51.0, 53.0, 53.0, 60.0, 89.0, 103.0, 108.5, 118.0, 118.0, 123.0, 126.0, 138.0, 139.0, 141.0, 141.0, 151.0) #Errors to be multiplied by Restistance x=c(0,.05,.10,.15,.20,.25) #Errors to be multiplied by Detector length y=c(0,.01,.02,.03,.04,.05) #equation to predict water weight in grams Rs<-(Lend^2)/R model.lm<-lm(w~Rs) a=predict.lm(model.lm) X=(R%o%x+R) Y=((Lend%o%y+Lend)^2) X Y num.x.col <- length(X[1,]) num.y.col <- length(Y[1,]) num.rows <- length(X[,1]) Z <- matrix(nrow=num.rows, ncol=num.x.col*num.y.col) for( i in 1:num.rows) { Z[i,] <- as.vector( Y[i,] %*% t(X[i,])^-1 ) } Z pred.est <- 3.453*Z+1.994 pred.est1 <- predict.lm(model.lm, data.frame(Rs=Z)) pred.est pred.est1 detach(z) detach(sen) On Sat, Feb 16, 2008 at 2:10 AM, Uwe Ligges <[EMAIL PROTECTED]> wrote: > > > Marlin Keith Cox wrote: > > Z is a matrix and when I run the following line, it creates a prediction > > estimate using each column, how can I get it an estimate for each > individual > > number. I have tried changing Z to a data.frame, but this does not do > it > > either. > > > > model.lm<-lm(w~x) > > > > pred.est <- predict.lm(model.lm, data.frame(x=Z)) > > That's what I do and it always worked for me. Can you please specify a > reproducible example that shows what you got and tells us exactly what > you expected? > > BTW: It is expected that you call the generic predict() rather than its > particular method. > > Uwe Ligges > > > > Thanks in advance, > > keith > > > -- Keith Cox, Ph.D. Sitka Sound Science Center Fisheries Biologist P.O. Box 464 Sitka, Alaska, 99835 907 752-0563 [EMAIL PROTECTED] [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.