Am Mittwoch, den 23.02.2011, 18:12 +0100 schrieb Juergen Rose: > class.weights=Wts,
I have just seen, that me last code was not complete. I try it once more: > library(e1071)> data(Glass, package = "mlbench") > index <- 1:nrow(Glass) > testindex <- sample(index, trunc(length(index)/5)) > testset <- Glass[testindex, ] > trainset <- Glass[-testindex, ] > datatrain <- subset(trainset,select=-Type) > classestrain <- subset(trainset,select=Type) If I now repeat: > model <- svm(datatrain,classestrain,type="C-classification",kernel="radial",cost=1) > pred.test=predict(model,datatest); table(pred.test,t(classestest)) I allways get the same result: pred.test 1 2 3 5 6 7 1 12 1 4 0 0 0 2 0 11 3 2 0 0 3 0 0 0 0 0 0 5 0 0 0 1 0 0 6 0 0 0 0 2 0 7 0 0 0 0 0 6 Also if I repeat: > model <- svm(datatrain,classestrain,type="C-classification",kernel="radial",cost=1,probability=TRUE) > pred.test=predict(model,datatest,probability=TRUE); table(pred.test,t(classestest)) I get the same result as above. But if I set: > Wts <- 1.0/table(Glass$Type) and if I then repeat: > model <- svm(datatrain,classestrain,type="C-classification",kernel="radial",cost=1,class.weights=Wts,probability=TRUE) > pred.test=predict(model,datatest,probability=TRUE); table(pred.test,t(classestest)) each attempt provides a different result: > model <- svm(datatrain,classestrain,type="C-classification",kernel="radial",cost=1,class.weights=Wts,probability=TRUE) > pred.test=predict(model,datatest,probability=TRUE); table(pred.test,t(classestest)) pred.test 1 2 3 5 6 7 1 0 3 3 3 2 6 2 12 9 4 0 0 0 3 0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 > model <- svm(datatrain,classestrain,type="C-classification",kernel="radial",cost=1,class.weights=Wts,probability=TRUE) > pred.test=predict(model,datatest,probability=TRUE); table(pred.test,t(classestest)) pred.test 1 2 3 5 6 7 1 12 12 7 3 2 6 2 0 0 0 0 0 0 3 0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 > model <- svm(datatrain,classestrain,type="C-classification",kernel="radial",cost=1,class.weights=Wts,probability=TRUE) > pred.test=predict(model,datatest,probability=TRUE); table(pred.test,t(classestest)) pred.test 1 2 3 5 6 7 1 12 9 6 0 1 0 2 0 3 1 3 1 6 3 0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 > model <- svm(datatrain,classestrain,type="C-classification",kernel="radial",cost=1,class.weights=Wts,probability=TRUE) > pred.test=predict(model,datatest,probability=TRUE); table(pred.test,t(classestest)) pred.test 1 2 3 5 6 7 1 12 12 7 3 2 6 2 0 0 0 0 0 0 3 0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 > model <- svm(datatrain,classestrain,type="C-classification",kernel="radial",cost=1,class.weights=Wts,probability=TRUE) > pred.test=predict(model,datatest,probability=TRUE); table(pred.test,t(classestest)) pred.test 1 2 3 5 6 7 1 10 11 3 3 0 3 2 2 1 4 0 2 3 3 0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 What I am doing wrong? ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.