On Fri, Feb 15, 2008 at 8:59 AM, Daniel Malter <[EMAIL PROTECTED]> wrote: > Thanks for your replies. My real problem is that, for my real data, I get > basically the same results from r2 and r3 (so to speak), but the coefficient > estimates and significance levels for r1 are very different from those of r2 > and r3. And therefore, I do not know which of the results to trust and which > not (if any).
For these data the development version (0.999375-4) of the lme4 package converges pretty rapidly to an estimate of zero for the variance component. > dat <- data.frame(Y = c(0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1), + X = c(1,2,3,4,3,1,0,0,2,3,3,2,4,3,2,1,1,3,4,2,3), + Subject = gl(7, 1, len = 21, labels = letters[1:7])) > dat Y X Subject 1 0 1 a 2 1 2 b 3 1 3 c 4 1 4 d 5 1 3 e 6 0 1 f 7 0 0 g 8 0 0 a 9 0 2 b 10 0 3 c 11 1 3 d 12 1 2 e 13 1 4 f 14 1 3 g 15 0 2 a 16 0 1 b 17 0 1 c 18 1 3 d 19 1 4 e 20 1 2 f 21 1 3 g > print(r1 <- lmer(Y~X+(1|Subject), dat, binomial, verbose = 1)) 0: 14.071151: 0.942809 -4.97872 2.43040 1: 14.006211: 0.861564 -4.96215 2.51055 2: 13.936051: 0.779991 -5.00923 2.44399 3: 13.723943: 0.226602 -5.11306 2.46057 4: 13.699745: 0.0880156 -5.07147 2.47386 5: 13.695821: 0.00000 -4.98859 2.42895 6: 13.695469: 0.00000 -4.98540 2.43314 7: 13.695462: 0.00000 -4.98163 2.43166 8: 13.695460: 0.00000 -4.97873 2.43040 9: 13.695460: 0.00000 -4.97872 2.43040 10: 13.695460: 0.00000 -4.97872 2.43040 Generalized linear mixed model fit by the Laplace approximation Formula: Y ~ X + (1 | Subject) Data: dat AIC BIC logLik deviance 19.70 22.83 -6.848 13.70 Random effects: Groups Name Variance Std.Dev. Subject (Intercept) 0 0 Number of obs: 21, groups: Subject, 7 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) -4.979 2.315 -2.150 0.0315 * X 2.430 1.026 2.368 0.0179 * --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) X -0.955 It is not terribly surprising if you look at a plot of the data. There are only 3 binary responses per subject, which is not much information per subject. I'm not sure what PQL would give for these data but the Laplace approximation will just revert to a generalized linear model without any random effects. > > The session info follows: > > R version 2.6.0 (2007-10-03) > i386-pc-mingw32 > > locale: > LC_COLLATE=English_United States.1252;LC_CTYPE=English_United > States.1252;LC_MONETARY=English_United > States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252 > > attached base packages: > [1] stats graphics grDevices utils datasets methods base > > other attached packages: > [1] nlme_3.1-86 mgcv_1.3-29 lme4_0.99875-9 Matrix_0.999375-3 > lattice_0.16-5 > > loaded via a namespace (and not attached): > [1] grid_2.6.0 > > Cheers, > Daniel > > > ------------------------- > cuncta stricte discussurus > ------------------------- > > -----Ursprüngliche Nachricht----- > Von: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED] Im Auftrag von Douglas > Bates > Gesendet: Friday, February 15, 2008 7:29 AM > An: Daniel Malter > Cc: [EMAIL PROTECTED] > Betreff: Re: [R] LMER > > > > Could you send us the output of sessionInfo() please so we can see which > version of the lme4 package you are using? In recent versions, especially > the development version available as > > install.packages("lme4", repos = "http://r-forge.r-project.org") > > the PQL algorithm is no longer used. The Laplace approximation is now the > default. The adaptive Gauss-Hermite quadrature (AGQ) approximation may be > offered in the future. > > If the documentation indicates that PQL is the default then that is a > documentation error. With the currently available implementation of the > direct optimization of the Laplace approximation to the log-likelihood for > the model there is no purpose in offering PQL. > > On Thu, Feb 14, 2008 at 6:50 PM, Daniel Malter <[EMAIL PROTECTED]> wrote: > > Hi, > > > > I run the following models: > > > > 1a. lmer(Y~X+(1|Subject),family=binomial(link="logit")) and 1b. > > lmer(Y~X+(1|Subject),family=binomial(link="logit"),method="PQL") > > > > Why does 1b produce results different from 1a? The reason why I am > > asking is that the help states that "PQL" is the default of GLMMs > > > > and > > > > 2. gamm(Y~X,family=binomial(link="logit"),random=list(Subject=~1)) > > > > The interesting thing about the example below is, that gamm is also > > supposed to fit by "PQL". Interestingly, however, the GAMM fit yields > > about the coefficient estimates of 1b. But the significance values of > > 1a. Any insight would be greatly appreciated. > > > > > > library(lme4) > > library(mgcv) > > > > Y=c(0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,1) > > X=c(1,2,3,4,3,1,0,0,2,3,3,2,4,3,2,1,1,3,4,2,3) > > Subject=as.factor(c(1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7)) > > cbind(Y,X,Subject) > > > > r1=lmer(Y~X+(1|Subject),family=binomial(link="logit")) > > summary(r1) > > > > r2=lmer(Y~X+(1|Subject),family=binomial(link="logit"),method="PQL") > > summary(r2) > > > > r3=gamm(Y~X,family=binomial(link="logit"),random=list(Subject=~1)) > > summary(r3$gam) > > > > > > > > ------------------------- > > cuncta stricte discussurus > > > > ______________________________________________ > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.