Hi:

You don't state the test for which you want the p-value, and to reiterate
what Dr. Ligges asked in response to your earlier post, how do you propose
to define a single R^2 measure? One may be able to answer your question re
an overall significance test using the anova() function:

> Y<-matrix(c(3,5,6,3,4,2,4,5,3,2,3,5,6,3,4,2,4,5,3,2,3,5,6,3,4,2,4,5,3,2),
nrow = 10, ncol=3, byrow=TRUE)
> X<-matrix(c(42,54,67,76,45,76,54,87,34,65), nrow = 10, ncol=1, byrow=TRUE)
> m <- lm(Y~X)
> anova(m)     # Default is Pillai's trace
Analysis of Variance Table

            Df  Pillai approx F num Df den Df    Pr(>F)
(Intercept)  1 0.97219   69.917      3      6 4.656e-05 ***
X            1 0.36415    1.145      3      6    0.4041
Residuals    8
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anova(m, test = 'Wilks')    # Wilks' lambda
Analysis of Variance Table

            Df   Wilks approx F num Df den Df    Pr(>F)
(Intercept)  1 0.02781   69.917      3      6 4.656e-05 ***
X            1 0.63585    1.145      3      6    0.4041
Residuals    8
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Roy's maximum root test and the Lawley-Hotelling statistic can also be
applied by using 'Roy' or 'Hotelling' as the value of the test = argument of
anova.lm().

HTH,
Dennis

On Sun, Feb 6, 2011 at 11:08 PM, Deniz SIGIRLI <denizsigi...@hotmail.com>wrote:

>
>
> #I have got 3 dependent variables:
>
> Y<-matrix(c(3,5,6,3,4,2,4,5,3,2,3,5,6,3,4,2,4,5,3,2,3,5,6,3,4,2,4,5,3,2),
> nrow = 10, ncol=3, byrow=TRUE)
> #I've got one independent variable:
>
> X<-matrix(c(42,54,67,76,45,76,54,87,34,65), nrow = 10, ncol=1, byrow=TRUE)
> summary(lm(Y~X))
>
>
> and the result is as below:
>  Response Y1 :
>
> Call:
> lm(formula = Y1 ~ X)
>
> Residuals:
>    Min      1Q  Median      3Q     Max
> -1.5040 -0.8838 -0.3960  1.1174  2.1162
>
> Coefficients:
>            Estimate Std. Error t value Pr(>|t|)
> (Intercept)  4.43507    1.70369   2.603   0.0315 *
> X           -0.01225    0.02742  -0.447   0.6668
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> Residual standard error: 1.401 on 8 degrees of freedom
> Multiple R-squared: 0.02435,    Adjusted R-squared: -0.09761
> F-statistic: 0.1997 on 1 and 8 DF,  p-value: 0.6668
>
>
> Response Y2 :
>
> Call:
> lm(formula = Y2 ~ X)
>
> Residuals:
>    Min      1Q  Median      3Q     Max
> -1.4680 -0.8437 -0.2193  0.9050  1.9960
>
> Coefficients:
>            Estimate Std. Error t value Pr(>|t|)
> (Intercept)  1.37994    1.50111   0.919    0.385
> X            0.03867    0.02416   1.601    0.148
>
> Residual standard error: 1.235 on 8 degrees of freedom
> Multiple R-squared: 0.2426,     Adjusted R-squared: 0.1479
> F-statistic: 2.562 on 1 and 8 DF,  p-value: 0.1481
>
>
> Response Y3 :
>
> Call:
> lm(formula = Y3 ~ X)
>
> Residuals:
>    Min      1Q  Median      3Q     Max
> -1.7689 -0.7316 -0.1943  1.1448  2.0933
>
> Coefficients:
>            Estimate Std. Error t value Pr(>|t|)
> (Intercept)  4.38913    1.70626   2.572    0.033 *
> X           -0.01149    0.02746  -0.418    0.687
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> Residual standard error: 1.403 on 8 degrees of freedom
> Multiple R-squared: 0.0214,     Adjusted R-squared: -0.1009
> F-statistic: 0.175 on 1 and 8 DF,  p-value: 0.6867
>
>
>
> There are 3 F statistics, R2 and p-values. But I want just one R2 and
> pvalue for my multivariate regression model.
>
>
>
>
>
>
>
>
>
> > Date: Fri, 4 Feb 2011 08:23:39 -0500
> > From: jsor...@grecc.umaryland.edu
> > To: denizsigi...@hotmail.com; r-help@r-project.org
> > Subject: Re: [R] multivariate regression
> >
> > Please help us help you. Follow the posting rules and send us a copy of
> your code and output.
> > John
> > John Sorkin
> > Chief Biostatistics and Informatics
> > Univ. of Maryland School of Medicine
> > Division of Gerontology and Geriatric Medicine
> > jsor...@grecc.umaryland.edu
> > -----Original Message-----
> > From: Deniz SIGIRLI <denizsigi...@hotmail.com>
> > To: <r-help@r-project.org>
> >
> > Sent: 2/4/2011 7:54:56 AM
> > Subject: [R] multivariate regression
> >
> >
> > How can I run multivariate linear regression in R (I have got 3 dependent
> variables and only 1 independent variable)? I tried lm function, but it gave
> different R2 and p values for every dependent variable. I need one R2 and p
> value for the model.
> > [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help@r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
> >
> > Confidentiality Statement:
> > This email message, including any attachments, is for ...{{dropped:5}}
>
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to