Hi David,

Thanks a lot for you inputs. I have modified my code accordingly. There
is one more place that I need some help.
This is my code:

========================================================================
======

X<- read.table("X.txt",as.is=T,header=T,row.names=1)
Y<- read.table("Y.txt",as.is=T,header=T,row.names=1)

X.mat<- as.matrix(X)
Y.mat<- as.matrix(Y)

# calculating the true correlation values from my original dataset
True.Corrs<- matrix()
for (k in 1:nrow(SNP.mat)){
True.Corrs[k]<- cor.test(X.mat[k,],Y.mat[k,],alternative
=c("greater"),method= c("pearson"))$p.value
}

# Creating the random distribution of Correlation p-values
X.rand <- list()
Y.rand<- list()

X.rand<-replicate(1000,(X[sample(1:ncol(Y))]),simplify=FALSE)  #
Randomizing the column values for each row
Y.rand<-replicate(1000,Y,simplify=FALSE) # Creating an equivalent list
of the Y matrix (non-randomised), to be able to do a pair-wise cor.test

Corrs.rand<- list()
tmp<- list()
for (i in 1:2){
for (j in 1:3){
# How to store a multiple values per element of list?
tmp[[j]] <- cor.test(t(X.rand[[i]][j,]),t(Y.rand[[i]][j,]),alternative
=c("greater"),method= c("pearson"))$p.value
Corrs.rand[[i]] <- rbind(Corrs.rand[[j]],tmp[[j]])
}
}

========================================================================

At this step:

for (i in 1:length(X.rand)){
for (j in 1:nrow(X.rand[[1]]){
# How to store a multiple values per element of list?
tmp[[j]] <- cor.test(t(X.rand[[i]][j,]),t(Y.rand[[i]][j,]),alternative
=c("greater"),method= c("pearson"))$p.value
Corrs.rand[[i]] <- rbind(Corrs.rand[[j]],tmp[[j]])
}
}

I am not sure how I can store multiple values per element. For eg. I
want a list of length 1000 (which is the number of random permutations I
have generated for my dataset) and in each element of the list I need to
store 12 p.values where 12 corresponds to the number of rows I have in
my randomized dataset. Eg.

[[1]]
0.23
0.05
0.78
0.78
0.87
0.11
0.003
0.9
0.76
0.11
0.23
0.56
[[2]]
0.08
0.67
0.45
0.23
0.35
0.85
0.99
0.78
0.66
0.45
0.06
0.1
[[3]]
So on... 
 
I maybe going about this in a complicated way and there may be other
ways of storing the p.values for each of my randomized dataset. So if
anybody has ideas please oblige me.
======================================================
X dataset:(sample)
#Probes X10851  X12144  X12155  X11882  X10860  X12762  X12239  X12154
1       1       1       0       0       1       0       2       0
2       0       0       0       0       0       0       0       0
3       2       2       2       2       1       2       1       2
4       0       0       0       0       0       0       0       0
5       2       2       2       2       2       2       2       2
6       0       1       0       0       1       1       1       1
7       2       2       NaN     2       2       2       2       2
8       2       2       2       2       2       2       2       2
9       0       1       0       1       1       NaN     1       2
10      2       2       2       2       2       2       2       2
11      2       0       0       0       0       0       0       0
12      0       1       0       1       1       0       1       1


Y dataset:(sample)

Probes  X10851  X12144  X12155  X11882  X10860  X12762  X12239  X12154
1       793.0830793     788.1813828     867.8504057     729.8321265
816.8519963     805.2113707     774.5990003     854.6384306
2       12.8695023      4.312894024     10.69769375     5.872212512
13.79299806     9.394132659     6.297552848     9.307943304
3       699.7791876     826.997429      795.6409729     770.9376141
806.1241089     782.3970486     817.107482      859.7154906
4       892.8217221     869.0481458     806.3386667     812.0431017
873.5565439     794.4752191     813.9587056     814.8681274
5       892.8217221     869.0481458     806.3386667     812.0431017
873.5565439     794.4752191     813.9587056     814.8681274
6       839.7350251     943.4455677     950.7575323     859.0208018
894.246041      853.524053      941.4841508     913.0246205
7       653.1272418     751.5217836     750.1757745     737.382114
757.8486157     758.2407075     724.2185775     770.8669409
8       12.8695023      4.312894024     10.69769375     5.872212512
13.79299806     9.394132659     6.297552848     9.307943304
9       839.7350251     943.4455677     950.7575323     859.0208018
894.246041      853.524053      941.4841508     913.0246205
10      653.1272418     751.5217836     750.1757745     737.382114
757.8486157     758.2407075     724.2185775     770.8669409
11      653.1272418     751.5217836     750.1757745     737.382114
757.8486157     758.2407075     724.2185775     770.8669409
12      839.7350251     943.4455677     950.7575323     859.0208018
894.246041      853.524053      941.4841508     913.0246205

Thanks again

Manisha




-----Original Message-----
From: David Winsemius [mailto:dwinsem...@comcast.net] 
Sent: Tuesday, January 18, 2011 11:56 PM
To: Brahmachary, Manisha
Cc: R-help@r-project.org
Subject: Re: [R] Pearson correlation with randomization


On Jan 18, 2011, at 11:23 PM, Brahmachary, Manisha wrote:

> Hello,
>
>
>
> I will be very obliged if someone can help me with this statistical R
> problem:
>
> I am trying to do a Pearson correlation on my datasets X, Y with
> randomization test. My X and Y datasets are pairs.
>
> 1.     I want to randomize (rearrange) only my X dataset per  
> row ,while
> keeping the my Y dataset as it is.

X <- X[sample(1:nrow(Y)), ]

>
> 2.     Then Calculate the correlation  for this pair, and compare it  
> to
> your true value of correlation.
>
> 3.     Repeat 2 and 3 maybe a 100 times

You may want to look at the replicate function.

>
> 4.     If your true p-value  is greater than 95% of the random values,
> then you can reject the null hypothesis at   p<0.05.

You won't have a very stable estimate of the 95th order statistics  
with "maybe" 100 replications.

-- 
David.
>
>
>
> I am stuck at the randomization step. I need some help in implementing
> it the appropriate randomization step in my correlation.
>
> Below is my incomplete code. I will be very obliged if someone could
> help:
>
>
>
> X <- read.table("X.txt",as.is=T,header=T,row.names=1)
>
> Y <- read.table("Y.txt",as.is=T,header=T,row.names=1)
>
>
>
> X.mat<- as.matrix(X)
>
> Y.mat<- as.matrix(Y)
>
>
>
> Corrs<- cor.test(X.mat[1,],Y.mat[1,],alternative =c("greater"),method=
> c("pearson"))
>
>
>
> Corrs.rand <- list()
>
>
>
> for (i in 1:length(X.mat)){
>
> for (j in 1:100){
>
>
>
> # This doesnot seem to wrok correctly. How do I run sample function  
> 100
> times for the same row?
>
>
>
> SNP.rand<- sample(SNP.mat[i,],56, replace = FALSE, prob = NULL)
>
> Corrs.rand[[j]]<- cor.test(SNP.rand,CNV.mat[j,],alternative
> =c("greater"),method= c("pearson"))
>
>
>
> # need to calculate how many times my pvalue from true p-value> random
> pvalue
>
> }
>
> }
>
>
>
> X dataset:
>
>
>
> #Probes
>
> X10851
>
> X12144
>
> X12155
>
> X11882
>
> X10860
>
> X12762
>
> X12239
>
> X12154
>
> 1
>
> 1
>
> 1
>
> 0
>
> 0
>
> 1
>
> 0
>
> 2
>
> 0
>
> 2
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 3
>
> 2
>
> 2
>
> 2
>
> 2
>
> 1
>
> 2
>
> 1
>
> 2
>
> 4
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 5
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 6
>
> 0
>
> 1
>
> 0
>
> 0
>
> 1
>
> 1
>
> 1
>
> 1
>
> 7
>
> 2
>
> 2
>
> NaN
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 8
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 9
>
> 0
>
> 1
>
> 0
>
> 1
>
> 1
>
> NaN
>
> 1
>
> 2
>
> 10
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 2
>
> 11
>
> 2
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 0
>
> 12
>
> 0
>
> 1
>
> 0
>
> 1
>
> 1
>
> 0
>
> 1
>
> 1
>
>
>
> Y dataset:
>
> Probes
>
> X10851
>
> X12144
>
> X12155
>
> X11882
>
> X10860
>
> X12762
>
> X12239
>
> X12154
>
> 1
>
> 793.0831
>
> 788.1814
>
> 867.8504
>
> 729.8321
>
> 816.852
>
> 805.2114
>
> 774.599
>
> 854.6384
>
> 2
>
> 12.8695
>
> 4.312894
>
> 10.69769
>
> 5.872213
>
> 13.793
>
> 9.394133
>
> 6.297553
>
> 9.307943
>
> 3
>
> 699.7792
>
> 826.9974
>
> 795.641
>
> 770.9376
>
> 806.1241
>
> 782.397
>
> 817.1075
>
> 859.7155
>
> 4
>
> 892.8217
>
> 869.0481
>
> 806.3387
>
> 812.0431
>
> 873.5565
>
> 794.4752
>
> 813.9587
>
> 814.8681
>
> 5
>
> 892.8217
>
> 869.0481
>
> 806.3387
>
> 812.0431
>
> 873.5565
>
> 794.4752
>
> 813.9587
>
> 814.8681
>
> 6
>
> 839.735
>
> 943.4456
>
> 950.7575
>
> 859.0208
>
> 894.246
>
> 853.5241
>
> 941.4842
>
> 913.0246
>
> 7
>
> 653.1272
>
> 751.5218
>
> 750.1758
>
> 737.3821
>
> 757.8486
>
> 758.2407
>
> 724.2186
>
> 770.8669
>
> 8
>
> 12.8695
>
> 4.312894
>
> 10.69769
>
> 5.872213
>
> 13.793
>
> 9.394133
>
> 6.297553
>
> 9.307943
>
> 9
>
> 839.735
>
> 943.4456
>
> 950.7575
>
> 859.0208
>
> 894.246
>
> 853.5241
>
> 941.4842
>
> 913.0246
>
> 10
>
> 653.1272
>
> 751.5218
>
> 750.1758
>
> 737.3821
>
> 757.8486
>
> 758.2407
>
> 724.2186
>
> 770.8669
>
> 11
>
> 653.1272
>
> 751.5218
>
> 750.1758
>
> 737.3821
>
> 757.8486
>
> 758.2407
>
> 724.2186
>
> 770.8669
>
> 12
>
> 839.735
>
> 943.4456
>
> 950.7575
>
> 859.0208
>
> 894.246
>
> 853.5241
>
> 941.4842
>
> 913.0246
>
>
>
>
>
>
>
> Thanks in advance
>
>
>
> Manisha
>
>
>
> Mount Sinai School of Medicine
>
> Icahn Medical Institute,
>
> 1425 Madison Avenue, Box 1498
>
> NY-10029, NEW-YORK, USA
>
>
>
>
>       [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

David Winsemius, MD
West Hartford, CT

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to