Hi all, I analysed my data with lme and after that I spent a lot of time for mean separation of treatments (post hoc). But still I couldnât make through it. This is my data set and R scripts I tried.
replication fertilizer variety plot height 1 level1 var1 1504 52 1 level1 var3 1506 59 1 level1 var4 1509 54 1 level1 var2 1510 48 2 level1 var1 2604 47 2 level1 var4 2606 51 2 level1 var3 2607 55 2 level1 var2 2609 44 3 level1 var2 3401 46 3 level1 var3 3402 64 3 level1 var4 3403 64 3 level1 var1 3404 50 1 level2 var3 1601 59 1 level2 var1 1605 56 1 level2 var2 1610 53 1 level2 var4 1611 53 2 level2 var2 2403 56 2 level2 var1 2405 61 2 level2 var4 2407 69 2 level2 var3 2413 70 3 level2 var3 3508 67 3 level2 var4 3511 73 3 level2 var2 3512 62 3 level2 var1 3513 67 1 level3 var4 1406 77 1 level3 var3 1408 74 1 level3 var1 1409 71 1 level3 var2 1410 69 2 level3 var4 2501 62 2 level3 var3 2507 58 2 level3 var2 2508 56 2 level3 var1 2513 63 3 level3 var3 3601 73 3 level3 var2 3603 59 3 level3 var1 3609 56 3 level3 var4 3612 61 modela<-lme(height~variety*fertilizer, random=~1|replication) summary(modela) anova(modela) library(multcomp) hgt <- glht(modela,linfct=mcp(fertilizer="Tukey")) summary(hgt) Any body can help me to proceed tukey (or lsd) with lme that would be highly appreciated. Prabhath University of Saskatchewan [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.