Dear Tal Galili,
thanks a lot for your answer! I agree with you, the t-test is comparing 2
conditions at one level of stimulus, while the ANOVA table is testing the
significance of the interaction between condition and stimuls....the two tests
are testing two different things.
But still I don´t understand which is the right way to perform the analysis in
order to solve my problem.
Let´s consider now only the table I posted before.
The same stimuli in the table have been presented to subjects in two
conditions:
A and AH, where AH is the condition A plus something elese (let´s call it "H").
I want to know if AT GLOBAL LEVEL adding "H" bring to better results in the
participants evaluations of the stimuli rather than the stimulus presented only
with condition "A".
Data in column "response" are evaluation on realism of the stimulus from a 7
point scale.
If I calculate the mean for each stmulus in each condition, the results show
that for each stimulus the AH condition is always greater than the first.
Anyway, doing a t-test to compare the stimuli by couple (es. flat_550_W_realism
in condition A, flat_550_W_realism in condition AH) I get that only sometimes
the differences are statistically significant. I ask you if there is a way to
say that condition AH is better than condition A, at global level.
In attachment you find the table in .txt and also in .csv format. Is it
possible
for you to make an example in R, including also the R results
in order to tell me what to see in the console to see if my problem is solved
or
not?
For example, I was checking in the anova results the stimulus:conditon
line.....but I don´t know if my anova analysis was correct or
not.
I am not an expert of R, nor of statistics ;-(
Anyway I am doing my best to study and understand.
Please enlighten me.
Thanks in advance
Best regards
________________________________
From: Tal Galili <tal.gal...@gmail.com>
To: Frodo Jedi <frodo.j...@yahoo.com>
Cc: r-help@r-project.org
Sent: Wed, January 5, 2011 10:15:41 AM
Subject: Re: [R] t-test or ANOVA...who wins? Help please!
Hello Frodo,
It is not clear to me from your questions some of the basics of your analysis.
If you only have two levels of a factor, and one response - why in the anova do
you use more factors (and their interactions)?
In that sense, it is obvious that your results would differ from the t-test.
In either case, I am not sure if any of these methods are valid since your data
doesn't seem to be normal.
Here is an example code of how to get the same results from aov and t.test.
And
also a nonparametric option (that might be more fitting)
flat_550_W_realism =c(3,3,5,3,3,3,3,5,3,3,5,7,5,2,3)
flat_550_W_realism_AH =c(7,4,5,3,6,5,3,5,5,7,2,7,5, 5)
x <- c(rep(1, length(flat_550_W_realism)),
rep(2, length(flat_550_W_realism_AH)))
y <- c(flat_550_W_realism , flat_550_W_realism_AH)
# equal results between t test and anova
t.test(y ~ x, var.equal= T)
summary(aov(y ~ x))
# plotting the data:
boxplot(y ~ x) # group 1 is not at all symetrical...
wilcox.test(y ~ x) # a more fitting test
----------------Contact
Details:-------------------------------------------------------
Contact me: tal.gal...@gmail.com | 972-52-7275845
Read me: www.talgalili.com (Hebrew) | www.biostatistics.co.il (Hebrew) |
www.r-statistics.com (English)
----------------------------------------------------------------------------------------------
On Wed, Jan 5, 2011 at 12:37 AM, Frodo Jedi <frodo.j...@yahoo.com> wrote:
>I kindly ask you an help because I really don´t know how to solve this problem.
>
number stimulus condition response
1 flat_550_W_realism A 3
2 flat_550_W_realism A 3
3 flat_550_W_realism A 5
4 flat_550_W_realism A 3
5 flat_550_W_realism A 3
6 flat_550_W_realism A 3
7 flat_550_W_realism A 3
8 flat_550_W_realism A 5
9 flat_550_W_realism A 3
10 flat_550_W_realism A 3
11 flat_550_W_realism A 5
12 flat_550_W_realism A 7
13 flat_550_W_realism A 5
14 flat_550_W_realism A 2
15 flat_550_W_realism A 3
16 flat_550_W_realism AH 7
17 flat_550_W_realism AH 4
18 flat_550_W_realism AH 5
19 flat_550_W_realism AH 3
20 flat_550_W_realism AH 6
21 flat_550_W_realism AH 5
22 flat_550_W_realism AH 3
23 flat_550_W_realism AH 5
24 flat_550_W_realism AH 5
25 flat_550_W_realism AH 7
26 flat_550_W_realism AH 2
27 flat_550_W_realism AH 7
28 flat_550_W_realism AH 5
29 flat_550_W_realism AH 5
30 bump_2_step_W_realism A 1
31 bump_2_step_W_realism A 3
32 bump_2_step_W_realism A 5
33 bump_2_step_W_realism A 1
34 bump_2_step_W_realism A 3
35 bump_2_step_W_realism A 2
36 bump_2_step_W_realism A 5
37 bump_2_step_W_realism A 4
38 bump_2_step_W_realism A 4
39 bump_2_step_W_realism A 4
40 bump_2_step_W_realism A 4
41 bump_2_step_W_realism AH 3
42 bump_2_step_W_realism AH 5
43 bump_2_step_W_realism AH 1
44 bump_2_step_W_realism AH 5
45 bump_2_step_W_realism AH 4
46 bump_2_step_W_realism AH 4
47 bump_2_step_W_realism AH 5
48 bump_2_step_W_realism AH 4
49 bump_2_step_W_realism AH 3
50 bump_2_step_W_realism AH 4
51 bump_2_step_W_realism AH 5
52 bump_2_step_W_realism AH 4
53 hole_2_step_W_realism A 3
54 hole_2_step_W_realism A 3
55 hole_2_step_W_realism A 4
56 hole_2_step_W_realism A 1
57 hole_2_step_W_realism A 4
58 hole_2_step_W_realism A 3
59 hole_2_step_W_realism A 5
60 hole_2_step_W_realism A 4
61 hole_2_step_W_realism A 3
62 hole_2_step_W_realism A 4
63 hole_2_step_W_realism A 7
64 hole_2_step_W_realism A 5
65 hole_2_step_W_realism A 1
66 hole_2_step_W_realism A 4
67 hole_2_step_W_realism AH 7
68 hole_2_step_W_realism AH 5
69 hole_2_step_W_realism AH 5
70 hole_2_step_W_realism AH 1
71 hole_2_step_W_realism AH 5
72 hole_2_step_W_realism AH 5
73 hole_2_step_W_realism AH 5
74 hole_2_step_W_realism AH 2
75 hole_2_step_W_realism AH 6
76 hole_2_step_W_realism AH 5
77 hole_2_step_W_realism AH 5
78 hole_2_step_W_realism AH 6
79 bump_2_heel_toe_W_realism A 3
80 bump_2_heel_toe_W_realism A 3
81 bump_2_heel_toe_W_realism A 3
82 bump_2_heel_toe_W_realism A 2
83 bump_2_heel_toe_W_realism A 3
84 bump_2_heel_toe_W_realism A 3
85 bump_2_heel_toe_W_realism A 4
86 bump_2_heel_toe_W_realism A 3
87 bump_2_heel_toe_W_realism A 4
88 bump_2_heel_toe_W_realism A 4
89 bump_2_heel_toe_W_realism A 6
90 bump_2_heel_toe_W_realism A 5
91 bump_2_heel_toe_W_realism A 4
92 bump_2_heel_toe_W_realism AH 7
93 bump_2_heel_toe_W_realism AH 3
94 bump_2_heel_toe_W_realism AH 4
95 bump_2_heel_toe_W_realism AH 2
96 bump_2_heel_toe_W_realism AH 5
97 bump_2_heel_toe_W_realism AH 6
98 bump_2_heel_toe_W_realism AH 4
99 bump_2_heel_toe_W_realism AH 4
100 bump_2_heel_toe_W_realism AH 4
101 bump_2_heel_toe_W_realism AH 5
102 bump_2_heel_toe_W_realism AH 2
103 bump_2_heel_toe_W_realism AH 6
104 bump_2_heel_toe_W_realism AH 5
105 hole_2_heel_toe_W_realism A 3
106 hole_2_heel_toe_W_realism A 3
107 hole_2_heel_toe_W_realism A 1
108 hole_2_heel_toe_W_realism A 3
109 hole_2_heel_toe_W_realism A 3
110 hole_2_heel_toe_W_realism A 5
111 hole_2_heel_toe_W_realism A 2
112 hole_2_heel_toe_W_realism AH 5
113 hole_2_heel_toe_W_realism AH 1
114 hole_2_heel_toe_W_realism AH 3
115 hole_2_heel_toe_W_realism AH 6
116 hole_2_heel_toe_W_realism AH 5
117 hole_2_heel_toe_W_realism AH 4
118 hole_2_heel_toe_W_realism AH 4
119 hole_2_heel_toe_W_realism AH 3
120 hole_2_heel_toe_W_realism AH 3
121 hole_2_heel_toe_W_realism AH 1
122 hole_2_heel_toe_W_realism AH 5
123 bump_2_combination_W_realism A 4
124 bump_2_combination_W_realism A 2
125 bump_2_combination_W_realism A 4
126 bump_2_combination_W_realism A 1
127 bump_2_combination_W_realism A 4
128 bump_2_combination_W_realism A 4
129 bump_2_combination_W_realism A 2
130 bump_2_combination_W_realism A 4
131 bump_2_combination_W_realism A 2
132 bump_2_combination_W_realism A 4
133 bump_2_combination_W_realism A 2
134 bump_2_combination_W_realism A 6
135 bump_2_combination_W_realism AH 7
136 bump_2_combination_W_realism AH 3
137 bump_2_combination_W_realism AH 4
138 bump_2_combination_W_realism AH 1
139 bump_2_combination_W_realism AH 6
140 bump_2_combination_W_realism AH 5
141 bump_2_combination_W_realism AH 5
142 bump_2_combination_W_realism AH 6
143 bump_2_combination_W_realism AH 5
144 bump_2_combination_W_realism AH 4
145 bump_2_combination_W_realism AH 2
146 bump_2_combination_W_realism AH 4
147 bump_2_combination_W_realism AH 2
148 bump_2_combination_W_realism AH 5
149 hole_2_combination_W_realism A 5
150 hole_2_combination_W_realism A 2
151 hole_2_combination_W_realism A 4
152 hole_2_combination_W_realism A 1
153 hole_2_combination_W_realism A 5
154 hole_2_combination_W_realism A 4
155 hole_2_combination_W_realism A 3
156 hole_2_combination_W_realism A 5
157 hole_2_combination_W_realism A 2
158 hole_2_combination_W_realism A 5
159 hole_2_combination_W_realism A 5
160 hole_2_combination_W_realism A 1
161 hole_2_combination_W_realism AH 7
162 hole_2_combination_W_realism AH 5
163 hole_2_combination_W_realism AH 3
164 hole_2_combination_W_realism AH 1
165 hole_2_combination_W_realism AH 6
166 hole_2_combination_W_realism AH 4
167 hole_2_combination_W_realism AH 7
168 hole_2_combination_W_realism AH 5
169 hole_2_combination_W_realism AH 5
170 hole_2_combination_W_realism AH 2
171 hole_2_combination_W_realism AH 6
172 hole_2_combination_W_realism AH 2
173 hole_2_combination_W_realism AH 4
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.