Am I trying to perform multiple linear regressions on each 'VARIABLE2'. I figured out that there are different ways, using the following code: (data is given at the end of this message) reg <- lapply(split(TRY, VARIABLE2), function(X){lm(X2 ~ X3, data=X)}) lapply(reg, summary)
Which produces the following: $`1` Call: lm(formula = X2 ~ X3, data = X) Residuals: Min 1Q Median 3Q Max -1.24233 -0.30028 0.03706 0.46170 1.12408 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.0705 0.2323 13.215 5.95e-15 *** X3 0.4744 0.2640 1.797 0.0813 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.5752 on 34 degrees of freedom Multiple R-squared: 0.08672, Adjusted R-squared: 0.05986 F-statistic: 3.228 on 1 and 34 DF, p-value: 0.08126 $`2` Call: lm(formula = X2 ~ X3, data = X) Residuals: Min 1Q Median 3Q Max -1.1358 -0.6403 0.2505 0.4055 1.2088 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.5859 0.2968 8.713 4.53e-10 *** X3 0.4957 0.3435 1.443 0.158 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.6765 on 33 degrees of freedom Multiple R-squared: 0.05937, Adjusted R-squared: 0.03086 F-statistic: 2.083 on 1 and 33 DF, p-value: 0.1584 $`3` Call: lm(formula = X2 ~ X3, data = X) Residuals: Min 1Q Median 3Q Max -1.70021 -0.66049 -0.00138 0.81210 1.26162 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.9473 0.3522 5.529 2.73e-06 *** X3 0.8515 0.3954 2.154 0.0378 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.8979 on 37 degrees of freedom Multiple R-squared: 0.1114, Adjusted R-squared: 0.08739 F-statistic: 4.639 on 1 and 37 DF, p-value: 0.03784 It should also be possible to use the lmList function, but remarkebly, I get the same estimates, but different Std. Errors... I used the following code: modlst <- lmList(X2 ~ X3 | VARIABLE2, TRY) summary(modlst) Which produces Call: Model: X2 ~ X3 | VARIABLE2 Data: TRY Coefficients: (Intercept) Estimate Std. Error t value Pr(>|t|) 1 3.070507 0.2969014 10.341841 0.000000e+00 2 2.585938 0.3224380 8.019952 1.665779e-12 3 1.947292 0.2882936 6.754546 8.454271e-10 X3 Estimate Std. Error t value Pr(>|t|) 1 0.4744112 0.3373931 1.406108 0.162672738 2 0.4957349 0.3731949 1.328354 0.186968753 3 0.8515270 0.3236325 2.631154 0.009803152 Residual standard error: 0.7350239 on 104 degrees of freedom I do not understand what is the difference between these two methods and what causes the difference in Std. Errors. Which method is preferable? I checked the results with other software programm, and those results corresponded with the first method... I really hope someone can explain where I made a mistake. Thank you. data.frame: TRY: VARIABLE2 X2 X3 1 1 2.3025851 1.00000000 2 1 3.8286414 1.00000000 3 1 4.3820266 1.00000000 4 1 3.6375862 1.00000000 5 1 3.7841896 1.00000000 6 1 3.4965076 1.00000000 7 1 2.8332133 1.00000000 8 1 3.6375862 1.00000000 9 1 4.0775374 1.00000000 10 1 3.4339872 1.00000000 11 1 3.5263605 1.00000000 12 1 3.0445224 1.00000000 13 1 2.8332133 1.00000000 14 1 2.7725887 1.00000000 15 1 3.0910425 1.00000000 16 1 4.1108739 1.00000000 17 1 3.2958369 1.00000000 18 1 2.7080502 1.00000000 19 1 2.9957323 1.00000000 20 1 3.6375862 1.00000000 21 1 3.8918203 1.00000000 22 1 3.8712010 1.00000000 23 1 3.4011974 1.00000000 24 1 3.2958369 1.00000000 25 1 4.1271344 1.00000000 26 1 4.1588831 1.00000000 27 1 4.1271344 0.90476190 28 1 3.8712010 0.66666667 29 1 4.5108595 0.66666667 30 1 3.9120230 0.33333333 31 1 3.6375862 0.23809524 32 1 3.4339872 0.04761905 33 1 2.8903718 0.00000000 34 1 2.8903718 0.00000000 35 1 2.8332133 0.00000000 36 1 1.9459101 0.00000000 37 2 2.0794415 1.00000000 38 2 3.4657359 1.00000000 39 2 3.9889840 1.00000000 40 2 3.4339872 1.00000000 41 2 3.4011974 1.00000000 42 2 3.3322045 1.00000000 43 2 2.8903718 1.00000000 44 2 3.3672958 1.00000000 45 2 3.3322045 1.00000000 46 2 3.4339872 1.00000000 47 2 3.4011974 1.00000000 48 2 3.2958369 1.00000000 49 2 2.8332133 1.00000000 50 2 3.3322045 1.00000000 51 2 3.3672958 1.00000000 52 2 3.6635616 1.00000000 53 2 2.8903718 1.00000000 54 2 1.9459101 1.00000000 55 2 2.0794415 1.00000000 56 2 2.3025851 1.00000000 57 2 2.4849066 1.00000000 58 2 2.0794415 1.00000000 59 2 2.3978953 1.00000000 60 2 2.4849066 1.00000000 61 2 4.2904594 1.00000000 62 2 3.9889840 0.57142857 63 2 3.6109179 0.52380952 64 2 3.5553481 0.33333333 65 2 3.1780538 0.33333333 66 2 3.1780538 0.33333333 67 2 2.7725887 0.33333333 68 2 3.1354942 0.19047619 69 2 1.7917595 0.09523810 70 2 1.9459101 0.19047619 71 2 1.6094379 0.00000000 72 3 2.3978953 1.00000000 73 3 2.4849066 1.00000000 74 3 1.6094379 1.00000000 75 3 1.3862944 1.00000000 76 3 1.7917595 1.00000000 77 3 1.0986123 1.00000000 78 3 2.0794415 1.00000000 79 3 1.3862944 1.00000000 80 3 1.9459101 1.00000000 81 3 3.1780538 1.00000000 82 3 2.1972246 1.00000000 83 3 2.4849066 1.00000000 84 3 2.6390573 1.00000000 85 3 3.6109179 1.00000000 86 3 2.3978953 1.00000000 87 3 2.1972246 1.00000000 88 3 1.6094379 1.00000000 89 3 3.0910425 1.00000000 90 3 3.6888795 1.00000000 91 3 3.3672958 1.00000000 92 3 3.4011974 1.00000000 93 3 2.4849066 1.00000000 94 3 3.4657359 1.00000000 95 3 4.0604430 1.00000000 96 3 3.6635616 1.00000000 97 3 3.6109179 1.00000000 98 3 3.8286414 1.00000000 99 3 3.6375862 1.00000000 100 3 3.7135721 1.00000000 101 3 3.8918203 0.80952381 102 3 3.7376696 0.85714286 103 3 3.0445224 0.66666667 104 3 3.2958369 0.33333333 105 3 2.7080502 0.00000000 106 3 1.9459101 0.00000000 107 3 2.4849066 0.04761905 108 3 1.9459101 0.00000000 109 3 0.6931472 0.00000000 -- View this message in context: http://r.789695.n4.nabble.com/lmList-and-lapply-lm-different-std-errors-tp3088903p3088903.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.