Consider the following missing data problem: y = c(1, 2, 2, 2, 3) a = factor(c(1, 1, 1, 2, 2)) b = factor(c(1, 2, 3, 1, 2)) fit = lm(y ~ a + b) anova(fit)
Analysis of Variance Table Response: y Df Sum Sq Mean Sq F value Pr(>F) a 1 0.83333 0.83333 1.3637e+33 < 2.2e-16 *** b 2 1.16667 0.58333 9.5461e+32 < 2.2e-16 *** Residuals 1 0.00000 0.00000 --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Warning message: In anova.lm(fit) : ANOVA F-tests on an essentially perfect fit are unreliable I am trying to understand how R computes sums of squares. I know that R makes a FORTRAN call to dqrls to make a QR decomposition of the design matrix, which returns (among other things), fit$effects (Intercept) a2 b2 b3 -4.472136e+00 9.128709e-01 7.715167e-01 7.559289e-01 2.471981e-17 Can anyone elaborate on how R computes these effects? I am not satisfied with the explanation that R provides with the help(effects) command. Thanks in advance. Ethan [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.