Hi,
I usually use optimize function for ML Estimation. Now I´ve got a data frame 
with many sets, but I can´t save estimates each time I run the code for each 
data set (I´m using a for loop with my loglikelihood function and works ok but 
when I apply another for loop to:
optimize(my.loglikelihood.function[i], int=c(0.0001,10))
it doesn´t work;

alternatively, using optimize inside the for loop (like in the example below), 
it returns always the same value, which is not expected:

data<-matrix(c(1,1,1, 2,2,2, 3,3,3, 4,4,4), nrow=3, ncol=4)
c<-dim(data)[2]
results<-vector(length=c)
for (i in 1:c){
f<-function(x){
x^2+x*sum(data[,i])
}
results[i]<-optimize(f,int=c(0.0001,10))[1] #minimum
}
#results

Can someone please indicate me if there´s a different function/ way to do so? 
(with no need of initial parameter values)
Thanks! Sandra                                    
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to