Dear Steven, I am so happy, that you answered me! I tried what you said to put all the variable in one dataframe. The Pretreatment is not really necessary, because it didn't show any significance. I didn't copy it into the help, because I tried to concentrate on the essential things.
Here is the whole code: PAMdata <-read.table("PAMdata.csv",sep = ";",header=TRUE) #warning: should have no extra anything in your column names ##inspect## head(PAMdata) summary(PAMdata) str(PAMdata) ##end inspect## install.packages(c("sciplot","nlme","multcomp")) library(mvtnorm) library(splines) library(survival) library(sciplot) library(nlme) library(multcomp) #Factors PAMdata$provenance[PAMdata$provenance == "1"] = "BG" PAMdata$provenance[PAMdata$provenance == "2"] = "DE" PAMdata$provenance[PAMdata$provenance == "3"] = "IT" PAMdata$provenance[PAMdata$provenance == "4"] = "SE" PAMdata$provenance[PAMdata$provenance == "5"] = "ES" PAMdata$provenance[PAMdata$provenance == "6"] = "HU" PAMdata$Treatmentf <- factor(PAMdata$treatment, levels=c("C","F")) PAMdata$Datef <- factor(PAMdata$Date, levels=c( "25.05.10 14:00","26.05.10 19:00","27.05.2010 7:30","27.05.10 14:00","01.06.10 14:00","02.06.10 19:00","23.06.10 12:30"),ordered=TRUE) PAMdata$Pretreatmentf <- as.factor(PAMdata$pretreatment) PAMdata$Provenancef <- as.factor(PAMdata$provenance) PAMdata$Greenhousef <- as.factor(PAMdata$greenhouse) PAMdata$Individualf <- as.factor(PAMdata$individual) PAMdata$PAMval <- (PAMdata$DataPAM) PAMdata$Code<-(PAMdata$code) head(PAMdata) ####### Statistischer Test mit Anova ######### summary(PAMaov<-aov(PAMval~Treatmentf*Pretreatmentf*Provenancef+Error(Datef/Code),data = PAMdata)) ############################################################# ##Linear fixed effects model lme summary(PAM.lme<-lme(PAMval~Treatmentf*Provenancef*Pretreatmentf, random=~1|Datef/Code, data = PAMdata, na.action=na.omit)) ### Tukey test ## summary(glht(PAM.lme, linfct = mcp(Provenancef = "Tukey"))) Error message: Fehler in glht.matrix(model = list(modelStruct = list(reStruct = list(Code = 0.808654423456211, : ncol(linfct) is not equal to length(coef(model)) Zusätzlich: Warnmeldung: In mcp2matrix(model, linfct = linfct) : covariate interactions found -- default contrast might be inappropriate summary(glht(PAM.lme, linfct = mcp(Treatmentf = "Tukey"))) --> gives the same error traceback() --> The whole traceback thing is huge, do you really wanna have it? Here are the last lines: 4: do.call("glht", args) 3: glht.mcp(PAM.lme, linfct = mcp(Provenancef = "Tukey")) 2: glht(PAM.lme, linfct = mcp(Provenancef = "Tukey")) 1: summary(glht(PAM.lme, linfct = mcp(Provenancef = "Tukey"))) with(PAMdata, table(Pretreatmentf, Provenancef, Treatmentf)) --> gives: , , Treatmentf = C Provenancef Pretreatmentf BG DE ES HU IT SE 0 0 0 0 0 0 C 63 63 42 63 63 63 W 63 63 63 63 63 63 , , Treatmentf = F Provenancef Pretreatmentf BG DE ES HU IT SE 0 0 0 0 0 0 C 63 63 63 63 63 63 W 63 63 63 63 63 63 sessionInfo() > sessionInfo() R version 2.12.0 (2010-10-15) Platform: i386-apple-darwin9.8.0/i386 (32-bit) locale: [1] de_DE.UTF-8/de_DE.UTF-8/C/C/de_DE.UTF-8/de_DE.UTF-8 attached base packages: [1] splines stats graphics grDevices utils datasets methods base other attached packages: [1] multcomp_1.2-4 nlme_3.1-97 sciplot_1.0-7 survival_2.35-8 mvtnorm_0.9-92 loaded via a namespace (and not attached): [1] grid_2.12.0 lattice_0.19-13 I would like very much to share the data, I am just not exactly sure how to make it? Thank you so much for your answer and your help! Now I don't feel so lonely with my problem anymore! Best wishes, Lilith [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.