All, How does one extract the level-1 variance from a model fit via lmer()?
In the code below the level-2 variance component may be obtained via subscripting, but what about the level-1 variance, viz., the 3.215072 term? (actually this term squared) Didn't see anything in the archives on this. Cheers, David > fm <- lmer( dv ~ time.num*drug + (1 | Patient.new), data=dat.new ) > VarCorr(fm) $Patient.new 1 x 1 Matrix of class "dpoMatrix" (Intercept) (Intercept) 8.519916 attr(,"sc") scale 3.215072 > VarCorr(fm)[[1]][1] [1] 8.519916 > VarCorr(fm)[[2]][1] Error in VarCorr(fm)[[2]] : subscript out of bounds ########################################################## set.seed(500) n.timepoints <- 4 n.subj.per.tx <- 20 sd.d <- 5; sd.p <- 2; sd.res <- 1.3 drug <- factor(rep(c("D", "P"), each = n.timepoints, times = n.subj.per.tx)) drug.baseline <- rep( c(0,5), each=n.timepoints, times=n.subj.per.tx ) #Patient <- rep(1:(n.subj.per.tx*2), each = n.timepoints) Patient.baseline <- rep( rnorm( n.subj.per.tx*2, sd=c(sd.d, sd.p) ), each=n.timepoints ) time.baseline <- rep(1:n.timepoints,n.subj.per.tx*2)*as.numeric(drug=="D") dv <- rnorm( n.subj.per.tx*n.timepoints*2, mean=time.baseline+Patient.baseline+drug.baseline, sd=sd.res ) dat.new <- data.frame(drug, dv) dat.new$Dind <- as.numeric(dat.new$drug == "D") dat.new$Pind <- as.numeric(dat.new$drug == "P") dat.new$time.num = rep(1:n.timepoints, n.subj.per.tx*2) dat.new$Patient.new = rep(1:20, each=8) ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.