I said nothing about legitimacy. I only suggested what I thought was a more satisfactory way the OP could get the issues resolved, since they seemed to go beyond R. The R-sig-mixed-models (check spelling) list might be a good place to look.
I believe Th R-help archives not the packages contain Doug Bates's comments on the issue. -- Bert On Sat, Nov 6, 2010 at 11:30 AM, Mike Marchywka <marchy...@hotmail.com> wrote: > >> Date: Sat, 6 Nov 2010 07:45:26 -0700 >> From: gunter.ber...@gene.com >> To: sibylle.stoec...@gmx.ch >> CC: r-help@r-project.org >> Subject: Re: [R] anova(lme.model) >> >> Sounds to me like you should really be seeking help from your local >> statistician, not this list. What you request probably cannot be done. > > > I'm still bringing my install up to speed so I can't immediately > read the cited R stuff below but it sounds like the OP > mentions a controversy documented in the R packages. Is there > a list for discussing these topics? Offhand that seems legitimate > for a user help list unless you want people to believe that > " it came out of a computer so it must be right, whatever a P value > is." > > >> >> What is wrong with what you get from lme, whose results seem fairly >> clear whether the P values are accurate or not? >> >> Cheers, >> Bert >> >> >> >> >> >> On Sat, Nov 6, 2010 at 4:04 AM, "Sibylle Stöckli" >> wrote: >> > Dear R users >> > >> > Topic: Linear effect model fitting using the nlme package (recomended by >> > Pinheiro et al. 2008 for unbalanced data set). >> > >> > The R help provides much info about the controversy to use the >> > anova(lme.model) function to present numerator df and F values. >> > Additionally different p-values calculated by lme and anova are reported. >> > However, I come across the same problem, and I would very much appreciate >> > some R help to fit an anova function to get similar p-values compared to >> > the lme function and additionally to provide corresponding F-values. I >> > tried to use contrasts and to deal with the ‚unbalanced data set’. >> > >> > Thanks >> > Sibylle >> > >> >> Kaltenborn<-read.table("Kaltenborn_YEARS.txt", na.strings="*", >> >> header=TRUE) >> >> >> >> >> >> library(nlme) >> > >> >> model5c<-lme(asin(sqrt(PropMortality))~Diversity+ >> >> Management+Species+Height+Height*Diversity, data=Kaltenborn, >> >> random=~1|Plot/SubPlot, na.action=na.omit, >> >> weights=varPower(form=~Diversity), subset=Kaltenborn$ADDspecies!=1, >> >> method="ML") >> > >> >> summary(model5c) >> > Linear mixed-effects model fit by maximum likelihood >> > Data: Kaltenborn >> > Subset: Kaltenborn$ADDspecies != 1 >> > AIC BIC logLik >> > -249.3509 -205.4723 137.6755 >> > >> > Random effects: >> > Formula: ~1 | Plot >> > (Intercept) >> > StdDev: 0.06162279 >> > >> > Formula: ~1 | SubPlot %in% Plot >> > (Intercept) Residual >> > StdDev: 0.03942785 0.05946185 >> > >> > Variance function: >> > Structure: Power of variance covariate >> > Formula: ~Diversity >> > Parameter estimates: >> > power >> > 0.7302087 >> > Fixed effects: asin(sqrt(PropMortality)) ~ Diversity + Management + >> > Species + Height + Height * Diversity >> > Value Std.Error DF t-value p-value >> > (Intercept) 0.5422893 0.05923691 163 9.154585 0.0000 >> > Diversity -0.0734688 0.02333159 14 -3.148896 0.0071 >> > Managementm+ 0.0217734 0.02283375 30 0.953562 0.3479 >> > Managementu -0.0557160 0.02286694 30 -2.436532 0.0210 >> > SpeciesPab -0.2058763 0.02763737 163 -7.449198 0.0000 >> > SpeciesPm 0.0308005 0.02827782 163 1.089210 0.2777 >> > SpeciesQp 0.0968051 0.02689327 163 3.599602 0.0004 >> > Height -0.0017579 0.00031667 163 -5.551251 0.0000 >> > Diversity:Height 0.0005122 0.00014443 163 3.546270 0.0005 >> > Correlation: >> > (Intr) Dvrsty Mngmn+ Mngmnt SpcsPb SpcsPm SpcsQp Height >> > Diversity -0.867 >> > Managementm+ -0.173 -0.019 >> > Managementu -0.206 0.005 0.499 >> > SpeciesPab -0.253 0.085 0.000 0.035 >> > SpeciesPm -0.239 0.058 0.001 0.064 0.521 >> > SpeciesQp -0.250 0.041 -0.001 0.032 0.502 0.506 >> > Height -0.518 0.532 -0.037 -0.004 0.038 0.004 0.033 >> > Diversity:Height 0.492 -0.581 0.031 -0.008 -0.149 -0.099 -0.069 -0.904 >> > >> > Standardized Within-Group Residuals: >> > Min Q1 Med Q3 Max >> > -2.99290873 -0.60522612 -0.05756772 0.62163049 2.80811502 >> > >> > Number of Observations: 216 >> > Number of Groups: >> > Plot SubPlot %in% Plot >> > 16 48 >> > >> >> anova(model5c) >> > numDF denDF F-value p-value >> > (Intercept) 1 163 244.67887 <.0001 >> > Diversity 1 14 1.53025 0.2364 >> > Management 2 30 6.01972 0.0063 >> > Species 3 163 51.86699 <.0001 >> > Height 1 163 30.08090 <.0001 >> > Diversity:Height 1 163 12.57603 0.0005 >> >> >> > >> >> -- >> Bert Gunter >> Genentech Nonclinical Biostatistics >> > > > > > > > Mike Marchywka | V.P. Technology > > 415-264-8477 > marchy...@phluant.com > > Online Advertising and Analytics for Mobile > http://www.phluant.com > > > -- Bert Gunter Genentech Nonclinical Biostatistics 467-7374 http://devo.gene.com/groups/devo/depts/ncb/home.shtml ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.