Hi 

I have a daily level time series data. What I need to do is a time series
analysis and forecasting and stuff. 

But the thing I am stuck at is - I cant get a decent time series plot of the
data I have 
http://r.789695.n4.nabble.com/file/n3021984/test.jpg 

This is a plot of daily level data from July 09 to Oct 10. what I am
interested is in - like instead of just 2010 time stamp on x axis, if I
could have monthly tags it would be great.

Here is what I have done - 
MY DATA IS OF THIS FORMAT

Date          X        Y            Z         A            B         C          
D         E            F        G
7/1/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/2/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/3/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/4/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/5/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/6/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/7/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/8/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/9/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/10/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/11/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/12/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/13/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/14/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/15/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/16/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/17/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/18/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/19/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/20/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/21/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/22/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/23/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/24/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/25/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/26/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/27/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/28/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/29/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/30/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
7/31/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/1/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/2/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/3/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/4/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/5/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/6/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/7/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/8/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/9/2009        0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/10/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/11/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/12/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/13/2009       0       0.00%   0       0.00%   0       0.00%   0       0.00%   
0       0.00%
8/14/2009       294     52.40%  29      5.20%   108     19.30%  1       0.20%   
10      1.80%
8/15/2009       217     49.90%  13      3.00%   49      11.30%  52      12.00%  
19      4.40%
8/16/2009       481     59.10%  76      9.30%   94      11.50%  4       0.50%   
15      1.80%
8/17/2009       568     65.00%  58      6.60%   119     13.60%  4       0.50%   
29      3.30%
8/18/2009       416     62.80%  25      3.80%   86      13.00%  7       1.10%   
23      3.50%
8/19/2009       529     58.10%  47      5.20%   105     11.50%  34      3.70%   
49      5.40%
...
..
.

WHAT I DID .
file<-read.csv("filename.csv",header=TRUE)
miedata<-as.POSIXct(strptime(as.character(file[,1]),format="%m/%d/%Y"))
zoom<-zoo(file[,2],miedata)
plot(zoom)


Any help of any sort will be greatly appreciated. Its been very hard to get
a grip of Irregular Time Series in R 

Thanks 

-- 
View this message in context: 
http://r.789695.n4.nabble.com/Irregular-Time-Series-tp3021984p3021984.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to