Ng Stanley wrote: > Hi, > > Given > > test <- matrix(c(1, 1,2,2), 2,2) > t <- apply(test, 1, t.test) > > How can I obtain a table of p-values, confidence interval etc, instead of
A quick hack would be: m <- t(sapply(t, function(x) c(x[["p.value"]], x[["conf.int"]]))) colnames(m) <- c("p", "lwr", "upr") m > > [[1]] > > One Sample t-test > > data: newX[, i] > t = 3, df = 1, p-value = 0.2048 > alternative hypothesis: true mean is not equal to 0 > 95 percent confidence interval: > -4.853102 7.853102 > sample estimates: > mean of x > 1.5 > > > [[2]] > > One Sample t-test > > data: newX[, i] > t = 3, df = 1, p-value = 0.2048 > alternative hypothesis: true mean is not equal to 0 > 95 percent confidence interval: > -4.853102 7.853102 > sample estimates: > mean of x > 1.5 > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.