Does this do what you want: > x <- lapply(seq_along(MaxGrowth), function(.num){ + AllPredictedValues[[.num]][[MaxGrowth[[.num]]]] + }) > x [[1]] [1] 2 1 2 2 2 2 0 2 2 0 0 2 2 0 0 2 2 1 2 0 1 1 0 0 0 2 0 0 0 2 2 0 0 1 0 0 2 0 1 0 2 0 0 2 1 0 0 0 2 1 0 2 2 [54] 2 2 0 2 0 1 0 2 0 1 0 0 0 1 0 0 2 2 2 2 2 2 1 0 2 0 2 0 0 0 0 2 0 2 1 2 2 0 2 0 0 0 0 1 2 2 1 Levels: 0 1 2
[[2]] [1] 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [54] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Levels: 0 1 2 [[3]] [1] 2 0 2 0 2 2 0 2 0 0 0 2 2 1 0 2 2 0 2 0 1 1 0 0 0 0 0 0 0 2 2 0 0 1 0 0 2 0 1 0 2 0 0 2 0 1 1 0 2 1 0 2 2 [54] 2 2 0 2 0 0 0 2 0 0 0 0 0 0 1 0 2 2 2 2 2 2 0 0 2 0 2 0 0 0 1 0 0 2 0 2 2 0 2 0 0 0 0 0 2 2 1 Levels: 0 1 2 > On Mon, Oct 18, 2010 at 5:36 PM, Gregory Ryslik <rsa...@comcast.net> wrote: > Hi, > > It seems that the files did not make it through the mailer. Perhaps it didn't > like my extensions. I have now attached the files as .txt's as well as copied > in the contents of each file: > > > > > MaxGrowth.txt: > > list(4L, 3L, 4L) > > AllPredictedValues.txt > > list(list(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0", "1", > "2"), class = "factor"), structure(c(3L, 1L, 3L, 3L, 3L, 3L, > 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, > 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 1L, 3L, 1L, 3L, 3L, 3L, 3L, > 1L, 3L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 3L, > 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, > 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 1L, > 3L, 1L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 1L), .Label = c("0", > "1", "2"), class = "factor"), structure(c(3L, 2L, 3L, 3L, 3L, > 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 2L, 3L, 1L, 2L, > 2L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 1L, 3L, 2L, 3L, 3L, 3L, > 3L, 2L, 3L, 3L, 3L, 1L, 3L, 2L, 1L, 1L, 1L, 3L, 2L, 1L, 3L, 3L, > 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 1L, 3L, > 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, > 1L, 3L, 2L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 2L, 3L, 3L, 2L), .Label = c("0", > "1", "2"), class = "factor"), structure(c(3L, 2L, 3L, 3L, 3L, > 3L, 1L, 3L, 3L, 1L, 1L, 3L, 3L, 1L, 1L, 3L, 3L, 2L, 3L, 1L, 2L, > 2L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 3L, > 1L, 2L, 1L, 3L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 3L, 2L, 1L, 3L, 3L, > 3L, 3L, 1L, 3L, 1L, 2L, 1L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, > 3L, 3L, 3L, 3L, 3L, 3L, 2L, 1L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, > 1L, 3L, 2L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 2L, 3L, 3L, 2L), .Label = c("0", > "1", "2"), class = "factor")), list(structure(c(2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L > ), .Label = c("0", "1", "2"), class = "factor"), structure(c(2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, > 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, > 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, > 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, > 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, > 2L, 2L, 2L), .Label = c("0", "1", "2"), class = "factor"), structure(c(1L, > 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, > 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 2L, 1L, 2L), .Label = c("0", "1", "2"), class = "factor")), list( > structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0", > "1", "2"), class = "factor"), structure(c(3L, 2L, 3L, 2L, > 3L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, > 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 3L, 3L, 2L, 3L, 2L, > 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, 2L, 2L, 2L, 2L, 3L, > 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, > 3L, 3L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, > 3L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 2L, 3L, 3L, 2L, 3L, 3L, 2L, > 3L, 3L, 2L, 3L, 3L, 2L), .Label = c("0", "1", "2"), class = "factor"), > structure(c(3L, 2L, 3L, 2L, 3L, 3L, 1L, 3L, 2L, 2L, 1L, 3L, > 3L, 2L, 1L, 3L, 3L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, > 2L, 2L, 3L, 3L, 2L, 1L, 2L, 1L, 1L, 3L, 1L, 2L, 1L, 3L, 1L, > 2L, 3L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 3L, > 1L, 2L, 1L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 3L, 3L, 3L, > 3L, 3L, 3L, 2L, 1L, 3L, 1L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, > 2L, 3L, 3L, 2L, 3L, 1L, 2L, 1L, 1L, 2L, 3L, 3L, 2L), .Label = c("0", > "1", "2"), class = "factor"), structure(c(3L, 1L, 3L, 1L, > 3L, 3L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 2L, 1L, 3L, 3L, 1L, 3L, > 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 2L, > 1L, 1L, 3L, 1L, 2L, 1L, 3L, 1L, 1L, 3L, 1L, 2L, 2L, 1L, 3L, > 2L, 1L, 3L, 3L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, > 1L, 1L, 1L, 2L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 1L, > 3L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L, 3L, 3L, 1L, 3L, 1L, 1L, > 1L, 1L, 1L, 3L, 3L, 2L), .Label = c("0", "1", "2"), class = "factor"))) > > > > > > > On Oct 18, 2010, at 4:09 PM, jim holtman wrote: > >> files did not make it through the mailer. How did you attach them? >> try outputting the data using 'dput' and then attaching a '.txt' file, >> or just pasting them in the email. >> >> On Mon, Oct 18, 2010 at 2:40 PM, Gregory Ryslik <rsa...@comcast.net> wrote: >>> Hi Everyone, >>> >>> This is closer to what I need but this returns me a matrix where each >>> element is a factor. Instead I would want a list of lists. The first entry >>> of the list should equal the first column of the matrix that mapply makes, >>> the second entry to the second column etc... >>> >>> I've attached the two files that have all.predicted.values and max.growth >>> from dput to make for easy testing. Thanks again! >>> >>> Kind regards, >>> Greg >>> >>> On Oct 18, 2010, at 1:33 PM, Erich Neuwirth wrote: >>> >>>> You probably need mapply since you have 2 list of arguments which you want >>>> to use "in sync" >>>> >>>> mapply(function(x1,x2)x1[[x2]],all.predicted.values,max.growth) >>>> >>>> might be what you want. >>>> >>>> >>>> >>>> On Oct 18, 2010, at 5:17 PM, Gregory Ryslik wrote: >>>> >>>>> Unfortunately, that gives me null everywhere. Here's the data I have for >>>>> all.predicted.values and max.growth. Perhaps this will help. Thus I want >>>>> all.predicted.values[[1]][[4]] then all.predicted.values[[2]][3]] and >>>>> then all.predicted.values[[3]][[4]]. >>>>> >>>>> I've attached what your statement outputs at the end. >>>>> >>>>> Thanks again! >>>>> >>>>> Browse[2]> max.growth >>>>> [[1]] >>>>> [1] 4 >>>>> >>>>> [[2]] >>>>> [1] 3 >>>>> >>>>> [[3]] >>>>> [1] 4 >>>>> >>>>> Browse[2]> all.predicted.values >>>>> [[1]] >>>>> [[1]][[1]] >>>>> [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> [55] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> Levels: 0 1 2 >>>>> >>>>> [[1]][[2]] >>>>> [1] 2 2 2 0 2 0 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 0 0 2 2 2 2 0 0 0 >>>>> 2 2 0 0 2 2 0 2 2 2 2 2 0 2 2 2 0 2 2 0 >>>>> [55] 0 0 2 0 2 0 0 0 0 2 2 2 2 0 2 2 2 0 2 2 0 0 2 2 2 2 2 2 2 0 0 0 2 0 >>>>> 2 2 2 2 0 2 2 2 0 2 0 0 >>>>> Levels: 0 1 2 >>>>> >>>>> [[1]][[3]] >>>>> [1] 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 2 2 2 0 0 0 2 0 0 2 0 0 0 >>>>> 0 0 0 0 2 0 0 0 0 0 2 2 0 0 0 2 0 0 0 0 >>>>> [55] 0 0 2 0 2 0 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> 0 2 2 0 0 0 0 0 0 2 0 0 >>>>> Levels: 0 1 2 >>>>> >>>>> [[1]][[4]] >>>>> [1] 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 2 2 2 0 0 0 2 0 0 2 0 0 0 >>>>> 0 0 0 0 2 0 0 0 0 0 2 2 0 0 0 2 0 0 0 0 >>>>> [55] 0 0 2 0 2 0 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> 0 2 2 0 0 0 0 0 0 2 0 0 >>>>> Levels: 0 1 2 >>>>> >>>>> >>>>> [[2]] >>>>> [[2]][[1]] >>>>> [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 >>>>> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 >>>>> [55] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 >>>>> 2 2 2 2 2 2 2 2 2 2 2 2 >>>>> Levels: 0 1 2 >>>>> >>>>> [[2]][[2]] >>>>> [1] 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 >>>>> 1 2 2 2 1 2 2 1 1 2 2 2 2 2 2 2 2 1 2 2 >>>>> [55] 2 2 2 2 1 2 2 2 2 1 2 2 1 1 1 2 2 2 1 2 1 2 1 2 1 2 2 2 1 1 2 2 1 2 >>>>> 2 1 1 2 1 1 1 2 2 1 2 2 >>>>> Levels: 0 1 2 >>>>> >>>>> [[2]][[3]] >>>>> [1] 2 2 2 0 1 2 2 2 2 2 1 2 2 2 0 1 2 1 2 2 2 2 2 2 2 0 0 2 1 2 2 2 0 0 >>>>> 1 2 0 0 1 2 0 1 1 2 2 2 0 2 2 2 0 1 2 2 >>>>> [55] 0 2 2 2 1 0 0 0 0 1 2 2 1 1 1 2 2 0 1 2 1 0 1 2 1 2 2 2 1 1 2 2 1 2 >>>>> 2 1 1 2 1 1 1 2 2 1 0 2 >>>>> Levels: 0 1 2 >>>>> >>>>> >>>>> [[3]] >>>>> [[3]][[1]] >>>>> [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> [55] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> 0 0 0 0 0 0 0 0 0 0 0 0 >>>>> Levels: 0 1 2 >>>>> >>>>> [[3]][[2]] >>>>> [1] 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 0 0 >>>>> 2 2 2 0 2 2 0 2 2 2 2 2 0 2 2 2 0 2 2 2 >>>>> [55] 0 2 2 2 2 2 0 0 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 >>>>> 2 2 2 2 2 2 2 2 2 2 2 2 >>>>> Levels: 0 1 2 >>>>> >>>>> [[3]][[3]] >>>>> [1] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 >>>>> 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 >>>>> [55] 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 >>>>> 0 1 1 0 1 1 1 0 0 1 1 0 >>>>> Levels: 0 1 2 >>>>> >>>>> [[3]][[4]] >>>>> [1] 2 2 2 0 1 0 2 2 0 2 1 2 2 0 0 1 1 1 1 0 2 0 0 0 2 0 0 0 1 2 0 0 0 0 >>>>> 1 2 0 0 1 2 0 1 1 2 0 0 0 2 2 0 0 1 2 0 >>>>> [55] 0 0 0 0 1 0 0 0 0 1 0 2 1 1 1 2 0 0 1 2 1 1 1 2 1 2 2 2 1 1 0 0 1 0 >>>>> 2 1 1 2 1 1 1 2 0 1 1 0 >>>>> Levels: 0 1 2 >>>>> >>>>> >>>>> Browse[2]> >>>>> predicted.values.for.max.growth<-diag(sapply(all.predicted.values,'[[','max.growth')) >>>>> Browse[2]> predicted.values.for.max.growth >>>>> [[1]] >>>>> NULL >>>>> >>>>> [[2]] >>>>> [1] 0 >>>>> >>>>> [[3]] >>>>> [1] 0 >>>>> >>>>> [[4]] >>>>> [1] 0 >>>>> >>>>> [[5]] >>>>> NULL >>>>> >>>>> [[6]] >>>>> [1] 0 >>>>> >>>>> [[7]] >>>>> [1] 0 >>>>> >>>>> [[8]] >>>>> [1] 0 >>>>> >>>>> [[9]] >>>>> NULL >>>>> >>>>> >>>>> >>>>> On Oct 18, 2010, at 11:08 AM, Henrique Dallazuanna wrote: >>>>> >>>>>> Try this: >>>>>> >>>>>> diag(sapply(all.predicted.values, '[[', 'max.growth')) >>>>>> >>>>>> >>>>>> On Mon, Oct 18, 2010 at 12:59 PM, Gregory Ryslik <rsa...@comcast.net> >>>>>> wrote: >>>>>> Hi, >>>>>> >>>>>> I have a list of n items and the ith element has m_i elements within it. >>>>>> >>>>>> I want to do something like: >>>>>> >>>>>> predicted.values<- lapply(all.predicted.values,'[[',max.growth[[i]]) >>>>>> >>>>>> Where max.growth[[i]] is the element I want to extract from each of the >>>>>> ith predicted elements. Thus, for example, I want to extract the >>>>>> max.growth[[1]] element from all.predicted.values[[1]] (which is itself >>>>>> a list). Then I want to extract max.growth[[2]] element from >>>>>> all.predicted.values[[2]]. >>>>>> >>>>>> I realize I can do this with a for loop but then if I can do this as one >>>>>> line that would be preferable. >>>>>> >>>>>> Thanks! >>>>>> >>>>>> Greg >>>>>> [[alternative HTML version deleted]] >>>>>> >>>>>> ______________________________________________ >>>>>> R-help@r-project.org mailing list >>>>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>>>> PLEASE do read the posting guide >>>>>> http://www.R-project.org/posting-guide.html >>>>>> and provide commented, minimal, self-contained, reproducible code. >>>>>> >>>>>> >>>>>> >>>>>> -- >>>>>> Henrique Dallazuanna >>>>>> Curitiba-Paraná-Brasil >>>>>> 25° 25' 40" S 49° 16' 22" O >>>>> >>>>> >>>>> [[alternative HTML version deleted]] >>>>> >>>>> ______________________________________________ >>>>> R-help@r-project.org mailing list >>>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>>> PLEASE do read the posting guide >>>>> http://www.R-project.org/posting-guide.html >>>>> and provide commented, minimal, self-contained, reproducible code. >>>> >>>> -- >>>> Erich Neuwirth >>>> Didactic Center for Computer Science and Institute for Scientific Computing >>>> University of Vienna >>>> >>>> >>>> >>>> >>> >>> ______________________________________________ >>> R-help@r-project.org mailing list >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >>> >> >> >> >> -- >> Jim Holtman >> Cincinnati, OH >> +1 513 646 9390 >> >> What is the problem that you are trying to solve? > > > -- Jim Holtman Cincinnati, OH +1 513 646 9390 What is the problem that you are trying to solve? ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.