constrOptim()  can do linear and quadratic programming problems!  See the
following example from the help document.   
 
    ## Solves linear and quadratic programming problems
     ## but needs a feasible starting value
     #
     # from example(solve.QP) in 'quadprog'
     # no derivative
     fQP <- function(b) {-sum(c(0,5,0)*b)+0.5*sum(b*b)}
     Amat       <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
     bvec       <- c(-8,2,0)
     constrOptim(c(2,-1,-1), fQP, NULL, ui=t(Amat),ci=bvec)
     # derivative
     gQP <- function(b) {-c(0,5,0)+b}
     constrOptim(c(2,-1,-1), fQP, gQP, ui=t(Amat), ci=bvec)
     
     ## Now with maximisation instead of minimisation
     hQP <- function(b) {sum(c(0,5,0)*b)-0.5*sum(b*b)}
     constrOptim(c(2,-1,-1), hQP, NULL, ui=t(Amat), ci=bvec,
                 control=list(fnscale=-1))

-- 
View this message in context: 
http://r.789695.n4.nabble.com/constrained-optimization-which-package-tp2717677p2718136.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to