Dear List,

I am familier with binary models, however i am now trying to get predictions 
from a ordinal model and have a question. 

I have a data set made up of 12 categorical predictors, the response variable 
is classed as 1,2,3,4,5,6, this relates to threat level of the species ( on the 
IUCN rating). 

Previously i have combined levels 1 and 2 to form = non threatened and then 
combined 3-6 to form threatened, and run a binary model. I have tested the 
performance of this based on the brier score (0.198) and the AUC or C value 
(0.75). I also partitioned the data set into training and test data and used 
the predict function to get a predicted probability for the newdata. When 
visualising the results with a cutoff value calculated with epi, roughly 75% of 
the time the prediction was correct. 

Now i am interested in predicting the threat level of a species not purely as 
threatened or not but to specific IUCN levels. I have used the predict.lrm 
function (predict.lrm(model1, type="fitted.ind"))  to generate probabilities 
for each level,  and also (predict(model1, traist, type="fitted")) see below. 

When i call the model the Brier score is  0.201  and C value 0.677. However  
when i inspect the output and relate it to the corresponding species ( for 
which i know the true IUCN rating) the model performs very badly, only getting 
43% correct. Interestingly i have noticed the probabilities are always highest 
for levels 1 and 6, on no occasion do levels 2,3,4 or 5 have high probabilities?

I am unsure if this is just because the model can not discriminate between the 
various levels due to insufficient data? Or if i am doing something wrong, if 
this is the case i would greatly appreciate any advice or suggestion of a 
different method. 

Thanks in advance,

Chris 


model1 <- lrm(EXTINCTION~BS*FR+WO+LIF+REG+ALT+BIO+HAB+PD+SEA, x=TRUE,y=TRUE)
predict.lrm(model1, type="fitted.ind")

    EXTINCTION=1 EXTINCTION=2 EXTINCTION=3 EXTINCTION=4 EXTINCTION=5
1     0.19748393   0.05895033   0.12811186  0.086140778  0.068137104
2     0.27790178   0.07247496   0.14384976  0.087487677  0.064584865
3     0.24605628   0.06777939   0.13931242  0.087996215  0.066625303
4     0.24605628   0.06777939   0.13931242  0.087996215  0.066625303
5     0.24605628   0.06777939   0.13931242  0.087996215  0.066625303
6     0.24605628   0.06777939   0.13931242  0.087996215  0.066625303
7     0.13928899   0.04558050   0.10636220  0.077770389  0.065500459
8     0.24605628   0.06777939   0.13931242  0.087996215  0.066625303
9     0.24605628   0.06777939   0.13931242  0.087996215  0.066625303
10    0.33865077   0.07915126   0.14744522  0.083923247  0.059387585

    EXTINCTION=6
1     0.46117600
2     0.35370096
3     0.39223038
4     0.39223038
5     0.39223038
6     0.39223038
7     0.56549746
8     0.39223038
9     0.39223038

predict(model1, traist, type="fitted")
          y>=2       y>=3       y>=4       y>=5       y>=6
1   0.80251607 0.74356575 0.61545388 0.52931311 0.46117600
2   0.72209822 0.64962327 0.50577351 0.41828583 0.35370096
3   0.75394372 0.68616432 0.54685190 0.45885569 0.39223038
4   0.75394372 0.68616432 0.54685190 0.45885569 0.39223038
5   0.75394372 0.68616432 0.54685190 0.45885569 0.39223038
6   0.75394372 0.68616432 0.54685190 0.45885569 0.39223038
7   0.86071101 0.81513051 0.70876831 0.63099792 0.56549746
8   0.75394372 0.68616432 0.54685190 0.45885569 0.39223038
9   0.75394372 0.68616432 0.54685190 0.45885569 0.39223038
10  0.66134923 0.58219797 0.43475276 0.35082951 0.29144192
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to