Dear all, I am perplexed when trying to get the same results using pairwise.t.test and t.test. I'm using examples in the ISwR library, >attach(red.cell.folate) I can get the same result for pairwise.t.test and t.test when I set the variances to be non-equal, but not when they are assumed to be equal. Can anyone explain the differences, or what I'm doing wrong? Here's an example where I compare the first two ventilations with pairwise.t.test and t.test > pairwise.t.test(folate, ventilation, p.adj="none", pool.sd=F) Pairwise comparisons using t tests with non-pooled SD data: folate and ventilation N2O+O2,24h N2O+O2,op N2O+O2,op 0.029 - O2,24h 0.161 0.298 P value adjustment method: none
> t.test(folate[1:8], folate[9:17], var.equal=F) Welch Two Sample t-test data: folate[1:8] and folate[9:17] t = 2.4901, df = 11.579, p-value = 0.02906 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 7.310453 113.050658 sample estimates: mean of x mean of y 316.6250 256.4444 So 0.029 and 0.02906 are identical but if I do the same with pool.sd and var.equal = T, I get different results > pairwise.t.test(folate, ventilation, p.adj="none", pool.sd=T) Pairwise comparisons using t tests with pooled SD data: folate and ventilation N2O+O2,24h N2O+O2,op N2O+O2,op 0.014 - O2,24h 0.155 0.408 P value adjustment method: none > t.test(folate[1:8], folate[9:17], var.equal=T) Two Sample t-test data: folate[1:8] and folate[9:17] t = 2.5582, df = 15, p-value = 0.02184 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 10.03871 110.32240 sample estimates: mean of x mean of y 316.6250 256.4444 So 0.014 and 0.02184 are not the same. [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.