run it with factor() instead of ordered(). You don't want the "orthogonal polynomial" contrasts that result from ordered if you need to compare against Stata.
I attach an R program that I wrote to explore ordered factors a while agol I believe this will clear everything up if you study the examples. pj On Wed, Sep 8, 2010 at 5:43 PM, Min-Han Tan <minhan.scie...@gmail.com> wrote: > Dear R-help members, > > Apologies - I am posting on behalf of a colleague, who is a little puzzled > as STATA and R seem to be yielding different survival estimates for the same > dataset when treating a variable as ordinal. Ordered() is used to represent > an ordinal variable) I understand that R's coxph (by default) uses the Efron > approximation, whereas STATA uses (by default) the Breslow. but we did > compare using the same approximations. I am wondering if this is a result of > how coxph manages an ordered factor? > > Essentially, this is a survival dataset using tumor grade (1, 2, 3 and 4) as > the risk factor. This is more of an 'ordinal' variable, rather than a > continuous variable. For the same data set of 399 patients, when treating > the vector of tumor grade as a continuous variable (range of 1 to 4), > testing the Efron and the Breslow approximations yield the same result in > both R and STATA. > > However, when Hist_Grade_4 grp is converted into an ordered factor using > ordered(), and the same scripts are applied, rather different results are > obtained, relative to the STATA output. This is tested across the different > approximations, with consistent results. The comparison using Efron > approximation and ordinal data is is below. > > Your advice is very much appreciated! > > Min-Han > > Apologies below for the slightly malaligned output. > > STATA output > > . xi:stcox i.Hist_Grade_4grp, efr > i.Hist_Grade_~p _IHist_Grad_1-4 (naturally coded; _IHist_Grad_1 > omitted) > > failure _d: FFR_censor > analysis time _t: FFR_month > > Iteration 0: log likelihood = -1133.369 > Iteration 1: log likelihood = -1129.4686 > Iteration 2: log likelihood = -1129.3196 > Iteration 3: log likelihood = -1129.3191 > Refining estimates: > Iteration 0: log likelihood = -1129.3191 > > Cox regression -- Efron method for ties > > No. of subjects = 399 Number of obs = > 399 > No. of failures = 218 > Time at risk = 9004.484606 > LR chi2(3) = > 8.10 > Log likelihood = -1129.3191 Prob > chi2 = > 0.0440 > > ------------------------------------------------------------------------------ > _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. > Interval] > -------------+---------------------------------------------------------------- > _IHist_Gra~2 | 1.408166 .3166876 1.52 0.128 .9062001 > 2.188183 > _IHist_Gra~3 | 1.69506 .3886792 2.30 0.021 1.081443 > 2.656847 > _IHist_Gra~4 | 2.540278 .9997843 2.37 0.018 1.17455 > 5.49403 > > > > R Output using >> summary ( coxph( Surv(FFR_month,FFR_censor) ~ Hist_Grade_4grp, > method=c("breslow"))) >> summary ( coxph( Surv(FFR_month,FFR_censor) ~ Hist_Grade_4grp, > method=c("exact"))) >> summary ( coxph( Surv(FFR_month,FFR_censor) ~ Hist_Grade_4grp, > method=c("efron"))) > > > > n=399 (21 observations deleted due to missingness) > > coef exp(coef) se(coef) z Pr(>|z|) > Hist_Grade_4grp.L 0.66685 1.94809 0.26644 2.503 0.0123 * > Hist_Grade_4grp.Q 0.03113 1.03162 0.20842 0.149 0.8813 > Hist_Grade_4grp.C 0.08407 1.08771 0.13233 0.635 0.5252 > --- > Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > > exp(coef) exp(-coef) lower .95 upper .95 > Hist_Grade_4grp.L 1.948 0.5133 1.1556 3.284 > Hist_Grade_4grp.Q 1.032 0.9693 0.6857 1.552 > Hist_Grade_4grp.C 1.088 0.9194 0.8392 1.410 > > Rsquare= 0.02 (max possible= 0.997 ) > Likelihood ratio test= 8.1 on 3 df, p=0.044 > Wald test = 8.02 on 3 df, p=0.0455 > Score (logrank) test = 8.2 on 3 df, p=0.04202 > > [[alternative HTML version deleted]] > > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > -- Paul E. Johnson Professor, Political Science 1541 Lilac Lane, Room 504 University of Kansas
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.