Hi:

See below.

On Mon, Aug 30, 2010 at 2:21 PM, Bruce Johnson
<bruce.ejohn...@verizon.net>wrote:

> I am trying to do post-hoc tests associated with a repeated measures
> analysis with on factor nested within respondents.
>
> The factor (SOI) has 17 levels.  The overall testing is working fine, but I
> can't seem to get the multiple comparisons to work.
>
> The first step is to "stack" the data.
>
>  Then I used "lme" to specify and test the overall model.
>
>  Finally I'm trying to use "glht" to do multiple comparisons.
>
> Here's my code and the resulting output.
>
> > ImpSoi<-ImpData[,c("iobs", soi)]
>
> > ImpSoi[1:5,]
>
>  iobs soi1 soi2 soi3 soi4 soi5 soi6 soi7 soi8 soi9 soi10 soi11 soi12 soi13
> soi14 soi15 soi16
>
> 1   32 7.00 7.00 7.00 7.00 7.00 6.00  7.0 7.00 5.00  7.00  7.00  7.00  7.00
> 5.00  7.00  6.00
>
> 2   70 5.95 4.95 7.00 4.95 5.20 5.40  4.2 3.95 4.15  4.95  4.85  4.95  6.75
> 5.95  5.20  5.10
>
> 3   78 3.00 1.00 4.75 2.75 3.00 4.50  4.0 4.00 1.50  4.00  4.00  4.50  2.50
> 3.00  3.75  4.00
>
> 4  104 3.75 3.50 6.25 5.25 4.25 3.75  4.0 5.25 4.75  4.75  5.00  5.75  6.00
> 4.00  4.75  3.75
>
> 5  117 5.00 5.00 4.00 5.00 2.00 4.62  5.0 4.00 4.00  4.00  5.00  4.00  4.70
> 4.70  5.00  2.00
>
>  soi17
>
> 1  7.00
>
> 2  5.15
>
> 3  4.00
>
> 4  5.50
>
> 5  4.00
>
> > stack <-
> reshape(ImpSoi,varying=soi,timevar="solution",idvar="iobs",sep="",
> dir="long")
>
> > solution <- factor(solution,levels(1:17),)
>
> > stack[1:5,]
>
>      iobs solution  soi
>
> 32.1    32        1 7.00
>
> 70.1    70        1 5.95
>
> 78.1    78        1 3.00
>
> 104.1  104        1 3.75
>
> 117.1  117        1 5.00
>

Try str(stack) at this point. Is solution a factor? (Hint: You defined
solution *outside* of the stack data frame. Now look at ls(), which
tells you the variables in your global workspace.)


> > Lmes.mod <- lme(soi ~ solution + iobs, random = ~1 | iobs/solution, data
> =
> stack)
>
> > anova(Lmes.mod)
>
>            numDF denDF   F-value p-value
>
> (Intercept)     1  2383 2894.8342  <.0001
>
> solution        1  2383    0.0003  0.9870
>
> iobs            1   147    0.0126  0.9109
>
> > summary(glht(Lmes.mod, linfct=mcp(solution="Tukey")))
>
> Error in mcp2matrix(model, linfct = linfct) :
>
>  Variable(s) 'solution' of class 'numeric' is/are not contained as a factor
> in 'model'.
>

This is telling you solution is a numeric variable in stack at this point,
correctly so.


>

>
>
> I don't understand the error since "solution" is clearly a factor in the
> model.
>

Here's what I don't understand. Why do you believe a procedure that
will produce 17 * 16 / 2 = 136 pairwise comparisons will be scientifically
meaningful? Please tell me you're not using a time variable as an
unordered factor with 17 levels... If you don't understand why that's a
problem, you need to consult with a local statistical expert. Seriously.

HTH,
Dennis

>
> Any suggestions would be welcome.
>
> Bruce
>
>
>
>
>
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to