Thanks Gabor, I probably should have done an example with fewer columns. i will rework the example and post it up so the next guys who has this issue can have a clear example with a solution.
On Sat, Aug 7, 2010 at 5:04 PM, Gabor Grothendieck <ggrothendi...@gmail.com>wrote: > On Sat, Aug 7, 2010 at 4:49 PM, steven mosher <mosherste...@gmail.com> > wrote: > > Given a data frame, or it could be a matrix if I choose to. > > The data consists of an ID, a year, and data for all 12 months. > > Missing values are a factor AND missing years. > > > > Id<-c(rep(67543,4),rep(12345,3),rep(89765,5)) > > Years<-c(seq(1989,1992,by =1),1991,1993,1994,seq(1991,1995,by=1)) > > Values2<-c(12,NA,34,21,NA,65,23,NA,13,NA,13,14) > > Values<-c(12,14,34,21,54,65,23,12,13,13,13,14) > > > > Data<-data.frame(Index=Id,Year=Years,Jan=Values,Feb=Values/2,Mar=Values2,Apr=Values2,Jun=Values,July=Values/3,Aug=Values2,Sep=Values, > > + Oct=Values,Nov=Values,Dec=Values2) > > Data > > Index Year Jan Feb Mar Apr Jun July Aug Sep Oct Nov Dec > > 1 67543 1989 12 6.0 12 12 12 4.000000 12 12 12 12 12 > > 2 67543 1990 14 7.0 NA NA 14 4.666667 NA 14 14 14 NA > > 3 67543 1991 34 17.0 34 34 34 11.333333 34 34 34 34 34 > > 4 67543 1992 21 10.5 21 21 21 7.000000 21 21 21 21 21 > > 5 12345 1991 54 27.0 NA NA 54 18.000000 NA 54 54 54 NA > > 6 12345 1993 65 32.5 65 65 65 21.666667 65 65 65 65 65 > > 7 12345 1994 23 11.5 23 23 23 7.666667 23 23 23 23 23 > > 8 89765 1991 12 6.0 NA NA 12 4.000000 NA 12 12 12 NA > > 9 89765 1992 13 6.5 13 13 13 4.333333 13 13 13 13 13 > > 10 89765 1993 13 6.5 NA NA 13 4.333333 NA 13 13 13 NA > > 11 89765 1994 13 6.5 13 13 13 4.333333 13 13 13 13 13 > > 12 89765 1995 14 7.0 14 14 14 4.666667 14 14 14 14 14 > > > > > > The Goal is to return a Time series object for each ID. Alternatively one > > could return a matrix that I can turn into a Time series. > > The final structure would be something like this ( done in matrix form > for > > illustration) > > 1989.0 1989.083 > > 1991 ......1992....1993..... 1994 .... 1995 > > 67543 12 6.0 12 12 12 4.000000 12 12 12 12 12... > > .34...........21.. NA.........NA........NA > > 12345 NA, NA, > > NA,.............................................................54 27 > > > > Basically the time series will have patches at the front, middle and end > > where you may have years of NA > > The must be column ordered by time and aligned so that averages for all > > series can be computed per month. > > > > Now I have looping code to do this, where I loop through all the IDs and > map > > the row of data into the correct > > column. and create column names based on the data and row names based on > the > > ID, but it's painfully > > slow. Any wizardry would help. > > Your email came out a bit garbled so its not clear what you want to > get out but this code will produce a multivariate ts series, i.e. an > mts series, with one column for each series: > > f <- function(x) ts(c(t(x[-(1:2)])), freq = 12, start = x$Year[1]) > do.call(cbind, by(Data, Data$Index, f)) > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.