Dear Troy,
use this commend, your will get IC95% and OR.

 logistic.model <- glm(formula =y~ x1+x2, family = binomial)
summary(logistic.model)

sum.coef<-summary(logistic.model)$coef

est<-exp(sum.coef[,1])
upper.ci<-exp(sum.coef[,1]+1.96*sum.coef[,2])
lower.ci<-exp(sum.coef[,1]-1.96*sum.coef[,2])

cbind(est,upper.ci,lower.ci)

regards.

2010/8/6 Troy S <troysocks-tw...@yahoo.com>

> Dear UseRs,
>
> I have fitted a logistic regression using glm and want a 95% confidence
> interval on a response probability.  Can I use
>
> predict(model, newdata, se.fit=T)
>
> Will fit +/- 1.96se give me a 95% of the logit?  And then
> exp(fit +/- 1.96se) / (exp(fit +/- 1.96se) +1) to get the probabilities?
>
> Troy
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to