If the collinearity you're seeing arose from the addition of a product (interaction) term, I do not think penalization is the best answer. What is the goal of your analysis? If it's prediction, then I wouldn't worry about this type of collinearity. If you're interested in inference, I'd try some transformation to reduce (but not necessarily eliminate) the effect of collinearity. Mean centering is the simplest, but not the only thing you can do.
Just my $0.02... Andy -----Original Message----- From: r-help-boun...@r-project.org [mailto:r-help-boun...@r-project.org] On Behalf Of Michael Haenlein Sent: Tuesday, August 03, 2010 10:44 AM To: 'Nikhil Kaza' Cc: r-help@r-project.org Subject: Re: [R] Collinearity in Moderated Multiple Regression Thanks very much -- it seems that Ridge Regression can do what I'm looking for! Best, Michael -----Original Message----- From: Nikhil Kaza [mailto:nikhil.l...@gmail.com] Sent: Tuesday, August 03, 2010 16:21 To: haenl...@gmail.com Cc: r-help@r-project.org (r-help@R-project.org) Subject: Re: [R] Collinearity in Moderated Multiple Regression My usual strategy of dealing with multicollinearity is to drop the offending variable or transform one them. I would also check vif functions in car and Design. I think you are looking for lm.ridge in MASS package. Nikhil Kaza Asst. Professor, City and Regional Planning University of North Carolina nikhil.l...@gmail.com On Aug 3, 2010, at 9:51 AM, haenl...@gmail.com wrote: > I'm sorry -- I think I chose a bad example. Let me start over again: > > I want to estimate a moderated regression model of the following form: > y = a*x1 + b*x2 + c*x1*x2 + e > > Based on my understanding, including an interaction term (x1*x2) into > the regression in addition to x1 and x2 leads to issues of > multicollinearity, as x1*x2 is likely to covary to some degree with x1 > (and x2). One recommendation I have seen in this context is to use > mean centering, but apparently this does not solve the problem (see: > Echambadi, Raj and James D. Hess (2007), "Mean-centering does not > alleviate collinearity problems in moderated multiple regression > models," Marketing science, 26 (3), > 438 - > 45). So my question is: Which R function can I use to estimate this > type of model. > > Sorry for the confusion caused due to my previous message, > > Michael > > > > > > > On Aug 3, 2010 3:42pm, David Winsemius <dwinsem...@comcast.net> wrote: >> I think you are attributing to "collinearity" a problem that is due >> to your small sample size. You are predicting 9 points with 3 >> predictor terms, and incorrectly concluding that there is some >> "inconsistency" >> because you get an R^2 that is above some number you deem surprising. >> (I got values between 0.2 and 0.4 on several runs. > > > >> Try: > >> x1 >> x2 >> x3 > > >> y >> model >> summary(model) > > > >> # Multiple R-squared: 0.04269 > > > >> -- > >> David. > > > >> On Aug 3, 2010, at 9:10 AM, Michael Haenlein wrote: > > > > >> Dear all, > > > >> I have one dependent variable y and two independent variables x1 and >> x2 > >> which I would like to use to explain y. x1 and x2 are design factors >> in an > >> experiment and are not correlated with each other. For example assume >> that: > > > >> x1 >> x2 >> cor(x1,x2) > > > >> The problem is that I do not only want to analyze the effect of x1 >> and x2 on > >> y but also of their interaction x1*x2. Evidently this interaction >> term has a > >> substantial correlation with both x1 and x2: > > > >> x3 >> cor(x1,x3) > >> cor(x2,x3) > > > >> I therefore expect that a simple regression of y on x1, x2 and >> x1*x2 will > >> lead to biased results due to multicollinearity. For example, even >> when y is > >> completely random and unrelated to x1 and x2, I obtain a substantial >> R2 for > >> a simple linear model which includes all three variables. This >> evidently > >> does not make sense: > > > >> y >> model >> summary(model) > > > >> Is there some function within R or in some separate library that >> allows me > >> to estimate such a regression without obtaining inconsistent results? > > > >> Thanks for your help in advance, > > > >> Michael > > > > > >> Michael Haenlein > >> Associate Professor of Marketing > >> ESCP Europe > >> Paris, France > > > >> [[alternative HTML version deleted]] > > > >> ______________________________________________ > >> R-help@r-project.org mailing list > >> https://stat.ethz.ch/mailman/listinfo/r-help > >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html > >> and provide commented, minimal, self-contained, reproducible code. > > > > >> David Winsemius, MD > >> West Hartford, CT > > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Notice: This e-mail message, together with any attachme...{{dropped:11}} ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.