Following Duncan Murdoch's off-list comments (thanks again!), here is a more complete/flexible version:
as.data.frame.lm <- function(x, ..., level = 0.95, exp = FALSE) { cf <- x |> summary() |> stats::coef() ci <- stats::confint(x, level = level) if (exp) { cf[, "Estimate"] <- exp(cf[, "Estimate"]) ci <- exp(ci) } df <- data.frame(row.names(cf), cf, ci, row.names = NULL) names(df) <- c("term", "estimate", "std.error", "statistic", "p.value", "conf.low", "conf.high") df } > lm(breaks ~ wool + tension, warpbreaks) |> as.data.frame() term estimate std.error statistic p.value conf.low conf.high 1 (Intercept) 39.277778 3.161783 12.422667 6.681866e-17 32.92715 45.6284061 2 woolB -5.777778 3.161783 -1.827380 7.361367e-02 -12.12841 0.5728505 3 tensionM -10.000000 3.872378 -2.582393 1.278683e-02 -17.77790 -2.2221006 4 tensionH -14.722222 3.872378 -3.801856 3.913842e-04 -22.50012 -6.9443228 > glm(breaks < 20 ~ wool + tension, data = warpbreaks) |> as.data.frame(exp = > TRUE) Waiting for profiling to be done... term estimate std.error statistic p.value conf.low conf.high 1 (Intercept) 1.076887 0.1226144 0.6041221 0.54849393 0.8468381 1.369429 2 woolB 1.076887 0.1226144 0.6041221 0.54849393 0.8468381 1.369429 3 tensionM 1.248849 0.1501714 1.4797909 0.14520270 0.9304302 1.676239 4 tensionH 1.395612 0.1501714 2.2196863 0.03100435 1.0397735 1.873229 Thank you. Best regards, Thomas -----Message d'origine----- De : SOEIRO Thomas Envoyé : jeudi 16 janvier 2025 14:36 À : r-devel@r-project.org Objet : as.data.frame() methods for model objects Hello all, Would there be any interest for adding as.data.frame() methods for model objects? Of course there is packages (e.g. broom), but I think providing methods would be more discoverable (and the patch would be small). It is really useful for exporting model results or for plotting. e.g.: as.data.frame.lm <- function(x) { # could get other arguments, e.g. exp = TRUE/FALSE to exponentiate estimate, conf.low, conf.high cf <- x |> summary() |> stats::coef() ci <- stats::confint(x) data.frame( term = row.names(cf), estimate = cf[, "Estimate"], p.value = cf[, 4], # magic number because name changes between lm() and glm(*, family = *) conf.low = ci[, "2.5 %"], conf.high = ci[, "97.5 %"], row.names = NULL ) } > lm(breaks ~ wool + tension, warpbreaks) |> as.data.frame() term estimate p.value conf.low conf.high 1 (Intercept) 39.277778 6.681866e-17 32.92715 45.6284061 2 woolB -5.777778 7.361367e-02 -12.12841 0.5728505 3 tensionM -10.000000 1.278683e-02 -17.77790 -2.2221006 4 tensionH -14.722222 3.913842e-04 -22.50012 -6.9443228 > glm(breaks < 20 ~ wool + tension, data = warpbreaks) |> as.data.frame() Waiting for profiling to be done... term estimate p.value conf.low conf.high 1 (Intercept) 0.07407407 0.54849393 -0.16624575 0.3143939 2 woolB 0.07407407 0.54849393 -0.16624575 0.3143939 3 tensionM 0.22222222 0.14520270 -0.07210825 0.5165527 4 tensionH 0.33333333 0.03100435 0.03900286 0.6276638 Thank you. Best regards, Thomas ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel