# R for Windows will not send your bug report automatically. # Please copy the bug report (after finishing it) to # your favorite email program and send it to # # [EMAIL PROTECTED] # ######################################################
This report is joint from Richard Heiberger <[EMAIL PROTECTED]> and Burt Holland <[EMAIL PROTECTED]>. Burt Holland is the coauthor of the paper that the ?ptukey documentation references. R was used to run an example in our elementary Stat course. It was a one-way ANOVA, the factor `strategy' having 3 levels Price, Quality and Convenience. We issued the command summary(simint(sales ~ strategy, type="Tukey", data=Xm15.01s)) and received the output Coefficients: Estimate 2.5 % 97.5 % t value Std.Err. strategyPrice-strategyConvenience 31.10 -40.67 102.87 1.043 29.824 strategyQuality-strategyConvenience 75.45 3.68 147.22 2.530 29.824 strategyQuality-strategyPrice 44.35 -27.42 116.12 1.487 29.824 p raw p Bonf p adj strategyPrice-strategyConvenience 0.301 0.904 0.553 strategyQuality-strategyConvenience 0.014 0.043 0.037 strategyQuality-strategyPrice 0.143 0.428 0.305 This gives correct 95% confidence intervals and adjusted p-values for the Tukey multiple comparisons procedure. Next we issued summary(simtest(sales ~ strategy, type="Tukey", data=Xm15.01s)) which produced the output Coefficients: Estimate t value Std.Err. p raw p Bonf strategyQuality-strategyConvenience 75.45 -2.530 29.824 0.014 0.043 strategyQuality-strategyPrice 44.35 -1.487 29.824 0.143 0.285 strategyPrice-strategyConvenience 31.10 -1.043 29.824 0.301 0.301 p adj strategyQuality-strategyConvenience 0.037 strategyQuality-strategyPrice 0.243 strategyPrice-strategyConvenience 0.301 Notice that the simtest output gives negative t statistics. This is wrong because the point estimates are positive. The simtest Bonferroni p-values and adjusted p-values differ from the simint values by more than trivial amounts. We are puzzled that the two functions use different conventions on sequencing the contrasts. For levels A,B,C, it looks like simint is using B-A C-A C-B and simtest is using C-A C-B B-A We verify all the p-values from the following code tt <- c(31.10,75.45,44.35)/29.824 tt 2*(1-pt(tt, 57)) ## raw 3 * (2*(1-pt(tt, 57))) ## Bonferroni 1-ptukey(tt*sqrt(2), 3, 57) ## tukey ## It looks like simtest is using (3:1) * (2*(1-pt(tt[c(2,3,1)], 57))) ## simtest Bonferroni ## The subscript is there to account for the different sequencing. ## The (3:1) multiplier is strange. ## It looks like simtest is using approximately (1-ptukey(tt[c(2,3,1)]*sqrt(2), 3, 57)) / (1+c(0,1,3)*.12)^2 ## We have no idea what that divisor is doing there other than ## approximating the answer that simtest is giving. ## Here is another example, this time using one of your datasets. ## Again, the p.Bonf and p.adj differ. Again, the t.values for the ## simtest have the wrong sign. ## This is from ## c:/Program Files/R/R-2.2.1/library/multcomp/R-ex/Rex.zip/simtest.R > data(cholesterol) > > # adjusted p-values for all-pairwise comparisons in a one-way > # layout (tests for restricted combinations) > simtest(response ~ trt, data=cholesterol, type="Tukey", ttype="logical") Simultaneous tests: Tukey contrasts Call: simtest.formula(formula = response ~ trt, data = cholesterol, type = "Tukey", ttype = "logical") Contrast matrix: trt1time trt2times trt4times trtdrugD trtdrugE trt2times-trt1time 0 -1 1 0 0 0 trt4times-trt1time 0 -1 0 1 0 0 trtdrugD-trt1time 0 -1 0 0 1 0 trtdrugE-trt1time 0 -1 0 0 0 1 trt4times-trt2times 0 0 -1 1 0 0 trtdrugD-trt2times 0 0 -1 0 1 0 trtdrugE-trt2times 0 0 -1 0 0 1 trtdrugD-trt4times 0 0 0 -1 1 0 trtdrugE-trt4times 0 0 0 -1 0 1 trtdrugE-trtdrugD 0 0 0 0 -1 1 Adjusted P-Values p adj trtdrugE-trt1time 0.000 trtdrugE-trt2times 0.000 trtdrugD-trt1time 0.000 trtdrugE-trt4times 0.000 trt4times-trt1time 0.000 trtdrugD-trt2times 0.000 trtdrugE-trtdrugD 0.001 trt2times-trt1time 0.042 trt4times-trt2times 0.042 trtdrugD-trt4times 0.044 > > > summary(simtest(response ~ trt, data=cholesterol, type="Tukey", > ttype="logical")) Simultaneous tests: Tukey contrasts Call: simtest.formula(formula = response ~ trt, data = cholesterol, type = "Tukey", ttype = "logical") Tukey contrasts for factor trt Contrast matrix: trt1time trt2times trt4times trtdrugD trtdrugE trt2times-trt1time 0 -1 1 0 0 0 trt4times-trt1time 0 -1 0 1 0 0 trtdrugD-trt1time 0 -1 0 0 1 0 trtdrugE-trt1time 0 -1 0 0 0 1 trt4times-trt2times 0 0 -1 1 0 0 trtdrugD-trt2times 0 0 -1 0 1 0 trtdrugE-trt2times 0 0 -1 0 0 1 trtdrugD-trt4times 0 0 0 -1 1 0 trtdrugE-trt4times 0 0 0 -1 0 1 trtdrugE-trtdrugD 0 0 0 0 -1 1 Absolute Error Tolerance: 0.001 Coefficients: Estimate t value Std.Err. p raw p Bonf p adj trtdrugE-trt1time 15.166 -10.507 1.443 0.000 0.000 0.000 trtdrugE-trt2times 11.723 -8.122 1.443 0.000 0.000 0.000 trtdrugD-trt1time 9.579 -6.637 1.443 0.000 0.000 0.000 trtdrugE-trt4times 8.573 -5.939 1.443 0.000 0.000 0.000 trt4times-trt1time 6.593 -4.568 1.443 0.000 0.000 0.000 trtdrugD-trt2times 6.136 -4.251 1.443 0.000 0.000 0.000 trtdrugE-trtdrugD 5.586 -3.870 1.443 0.000 0.001 0.001 trt2times-trt1time 3.443 -2.385 1.443 0.021 0.043 0.042 trt4times-trt2times 3.150 -2.182 1.443 0.034 0.043 0.042 trtdrugD-trt4times 2.986 -2.069 1.443 0.044 0.044 0.044 > summary(simint(response ~ trt, data=cholesterol, type="Tukey", > ttype="logical")) Simultaneous 95% confidence intervals: Tukey contrasts Call: simint.formula(formula = response ~ trt, data = cholesterol, type = "Tukey", ttype = "logical") Tukey contrasts for factor trt Contrast matrix: trt1time trt2times trt4times trtdrugD trtdrugE trt2times-trt1time 0 -1 1 0 0 0 trt4times-trt1time 0 -1 0 1 0 0 trtdrugD-trt1time 0 -1 0 0 1 0 trtdrugE-trt1time 0 -1 0 0 0 1 trt4times-trt2times 0 0 -1 1 0 0 trtdrugD-trt2times 0 0 -1 0 1 0 trtdrugE-trt2times 0 0 -1 0 0 1 trtdrugD-trt4times 0 0 0 -1 1 0 trtdrugE-trt4times 0 0 0 -1 0 1 trtdrugE-trtdrugD 0 0 0 0 -1 1 Absolute Error Tolerance: 0.001 95 % quantile: 2.842 Coefficients: Estimate 2.5 % 97.5 % t value Std.Err. p raw p Bonf p adj trt2times-trt1time 3.443 -0.658 7.544 2.385 1.443 0.021 0.213 0.138 trt4times-trt1time 6.593 2.491 10.694 4.568 1.443 0.000 0.000 0.000 trtdrugD-trt1time 9.579 5.478 13.681 6.637 1.443 0.000 0.000 0.000 trtdrugE-trt1time 15.166 11.064 19.267 10.507 1.443 0.000 0.000 0.000 trt4times-trt2times 3.150 -0.952 7.251 2.182 1.443 0.034 0.344 0.205 trtdrugD-trt2times 6.136 2.035 10.238 4.251 1.443 0.000 0.001 0.001 trtdrugE-trt2times 11.723 7.621 15.824 8.122 1.443 0.000 0.000 0.000 trtdrugD-trt4times 2.986 -1.115 7.088 2.069 1.443 0.044 0.443 0.251 trtdrugE-trt4times 8.573 4.471 12.674 5.939 1.443 0.000 0.000 0.000 trtdrugE-trtdrugD 5.586 1.485 9.688 3.870 1.443 0.000 0.003 0.003 > --please do not edit the information below-- Version: platform = i386-pc-mingw32 arch = i386 os = mingw32 system = i386, mingw32 status = major = 2 minor = 2.1 year = 2005 month = 12 day = 20 svn rev = 36812 language = R Windows XP Home Edition (build 2600) Service Pack 2.0 Locale: LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252 Search Path: .GlobalEnv, package:multcomp, package:mvtnorm, package:abind, package:relimp, file:C:/PROGRA~1/R/R-22~1.1/library/Rcmdr/etc/HH/.RData, package:leaps, package:Rcmdr, package:car, package:tcltk, package:methods, package:stats, package:graphics, package:grDevices, package:utils, package:datasets, package:rcom, RcmdrEnv, Autoloads, package:base ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel