vCPU register info needs to be re-initialized each time vCPU is hot-plugged. This has to be done both for emulation/TCG and KVM case. This is done in context to the GIC update notification for any vCPU hot-(un)plug events. This change adds that support and re-factors existing to maximize the code re-use.
Co-developed-by: Salil Mehta <salil.me...@huawei.com> Signed-off-by: Salil Mehta <salil.me...@huawei.com> Co-developed-by: Keqian Zhu <zhukeqi...@huawei.com> Signed-off-by: Keqian Zhu <zhukeqi...@huawei.com> Signed-off-by: Salil Mehta <salil.me...@huawei.com> --- hw/intc/arm_gicv3.c | 1 + hw/intc/arm_gicv3_common.c | 7 +- hw/intc/arm_gicv3_cpuif.c | 257 +++++++++++++++-------------- hw/intc/arm_gicv3_kvm.c | 7 +- hw/intc/gicv3_internal.h | 1 + include/hw/intc/arm_gicv3_common.h | 1 + 6 files changed, 150 insertions(+), 124 deletions(-) diff --git a/hw/intc/arm_gicv3.c b/hw/intc/arm_gicv3.c index 0b8f79a122..e1c7c8c4bc 100644 --- a/hw/intc/arm_gicv3.c +++ b/hw/intc/arm_gicv3.c @@ -410,6 +410,7 @@ static void arm_gicv3_class_init(ObjectClass *klass, void *data) ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); agcc->post_load = arm_gicv3_post_load; + agcc->init_cpu_reginfo = gicv3_init_cpu_reginfo; device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); } diff --git a/hw/intc/arm_gicv3_common.c b/hw/intc/arm_gicv3_common.c index fc87fa9369..d051024a30 100644 --- a/hw/intc/arm_gicv3_common.c +++ b/hw/intc/arm_gicv3_common.c @@ -345,10 +345,12 @@ static void arm_gicv3_cpu_update_notifier(Notifier *notifier, void * data) { GICv3CPUHotplugInfo *gic_info = (GICv3CPUHotplugInfo *)data; CPUState *cpu = gic_info->cpu; + ARMGICv3CommonClass *c; int gic_cpuif_num; GICv3State *s; s = ARM_GICV3_COMMON(gic_info->gic); + c = ARM_GICV3_COMMON_GET_CLASS(s); /* this shall get us mapped gicv3 cpuif corresponding to mpidr */ gic_cpuif_num = arm_gicv3_get_proc_num(s, cpu); @@ -368,7 +370,10 @@ static void arm_gicv3_cpu_update_notifier(Notifier *notifier, void * data) gicv3_set_gicv3state(cpu, &s->cpu[gic_cpuif_num]); gicv3_set_cpustate(&s->cpu[gic_cpuif_num], cpu); - /* TODO: initialize the registers info for this newly added cpu */ + /* initialize the registers info for this newly added cpu */ + if (c->init_cpu_reginfo) { + c->init_cpu_reginfo(cpu); + } } static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) diff --git a/hw/intc/arm_gicv3_cpuif.c b/hw/intc/arm_gicv3_cpuif.c index 7b7a0fdb9c..70fc2cc858 100644 --- a/hw/intc/arm_gicv3_cpuif.c +++ b/hw/intc/arm_gicv3_cpuif.c @@ -2782,6 +2782,127 @@ static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { }, }; +void gicv3_init_cpu_reginfo(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + GICv3CPUState *gcs = icc_cs_from_env(&cpu->env); + + /* + * If the CPU doesn't define a GICv3 configuration, probably because + * in real hardware it doesn't have one, then we use default values + * matching the one used by most Arm CPUs. This applies to: + * cpu->gic_num_lrs + * cpu->gic_vpribits + * cpu->gic_vprebits + * cpu->gic_pribits + */ + + /* + * Note that we can't just use the GICv3CPUState as an opaque pointer + * in define_arm_cp_regs_with_opaque(), because when we're called back + * it might be with code translated by CPU 0 but run by CPU 1, in + * which case we'd get the wrong value. + * So instead we define the regs with no ri->opaque info, and + * get back to the GICv3CPUState from the CPUARMState. + */ + define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); + + /* + * The CPU implementation specifies the number of supported + * bits of physical priority. For backwards compatibility + * of migration, we have a compat property that forces use + * of 8 priority bits regardless of what the CPU really has. + */ + if (gcs->gic->force_8bit_prio) { + gcs->pribits = 8; + } else { + gcs->pribits = cpu->gic_pribits ?: 5; + } + + /* + * The GICv3 has separate ID register fields for virtual priority + * and preemption bit values, but only a single ID register field + * for the physical priority bits. The preemption bit count is + * always the same as the priority bit count, except that 8 bits + * of priority means 7 preemption bits. We precalculate the + * preemption bits because it simplifies the code and makes the + * parallels between the virtual and physical bits of the GIC + * a bit clearer. + */ + gcs->prebits = gcs->pribits; + if (gcs->prebits == 8) { + gcs->prebits--; + } + /* + * Check that CPU code defining pribits didn't violate + * architectural constraints our implementation relies on. + */ + g_assert(gcs->pribits >= 4 && gcs->pribits <= 8); + + /* + * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions + * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. + */ + if (gcs->prebits >= 6) { + define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); + } + if (gcs->prebits == 7) { + define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); + } + + if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { + int j; + + gcs->num_list_regs = cpu->gic_num_lrs ?: 4; + gcs->vpribits = cpu->gic_vpribits ?: 5; + gcs->vprebits = cpu->gic_vprebits ?: 5; + + /* + * Check against architectural constraints: getting these + * wrong would be a bug in the CPU code defining these, + * and the implementation relies on them holding. + */ + g_assert(gcs->vprebits <= gcs->vpribits); + g_assert(gcs->vprebits >= 5 && gcs->vprebits <= 7); + g_assert(gcs->vpribits >= 5 && gcs->vpribits <= 8); + + define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); + + for (j = 0; j < gcs->num_list_regs; j++) { + /* + * Note that the AArch64 LRs are 64-bit; the AArch32 LRs + * are split into two cp15 regs, LR (the low part, with the + * same encoding as the AArch64 LR) and LRC (the high part). + */ + ARMCPRegInfo lr_regset[] = { + { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, + .crm = 12 + (j >> 3), .opc2 = j & 7, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_lr_read, + .writefn = ich_lr_write, + }, + { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 12, + .crm = 14 + (j >> 3), .opc2 = j & 7, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_lr_read, + .writefn = ich_lr_write, + }, + }; + define_arm_cp_regs(cpu, lr_regset); + } + if (gcs->vprebits >= 6) { + define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); + } + if (gcs->vprebits == 7) { + define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); + } + } +} + static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) { GICv3CPUState *cs = opaque; @@ -2804,131 +2925,23 @@ void gicv3_init_cpuif(GICv3State *s) for (i = 0; i < s->num_cpu; i++) { ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); - GICv3CPUState *cs = &s->cpu[i]; - - /* - * If the CPU doesn't define a GICv3 configuration, probably because - * in real hardware it doesn't have one, then we use default values - * matching the one used by most Arm CPUs. This applies to: - * cpu->gic_num_lrs - * cpu->gic_vpribits - * cpu->gic_vprebits - * cpu->gic_pribits - */ - - /* Note that we can't just use the GICv3CPUState as an opaque pointer - * in define_arm_cp_regs_with_opaque(), because when we're called back - * it might be with code translated by CPU 0 but run by CPU 1, in - * which case we'd get the wrong value. - * So instead we define the regs with no ri->opaque info, and - * get back to the GICv3CPUState from the CPUARMState. - * - * These CP regs callbacks can be called from either TCG or HVF code. - */ - define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); - - /* - * The CPU implementation specifies the number of supported - * bits of physical priority. For backwards compatibility - * of migration, we have a compat property that forces use - * of 8 priority bits regardless of what the CPU really has. - */ - if (s->force_8bit_prio) { - cs->pribits = 8; - } else { - cs->pribits = cpu->gic_pribits ?: 5; - } - - /* - * The GICv3 has separate ID register fields for virtual priority - * and preemption bit values, but only a single ID register field - * for the physical priority bits. The preemption bit count is - * always the same as the priority bit count, except that 8 bits - * of priority means 7 preemption bits. We precalculate the - * preemption bits because it simplifies the code and makes the - * parallels between the virtual and physical bits of the GIC - * a bit clearer. - */ - cs->prebits = cs->pribits; - if (cs->prebits == 8) { - cs->prebits--; - } - /* - * Check that CPU code defining pribits didn't violate - * architectural constraints our implementation relies on. - */ - g_assert(cs->pribits >= 4 && cs->pribits <= 8); - /* - * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions - * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. - */ - if (cs->prebits >= 6) { - define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); - } - if (cs->prebits == 7) { - define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); - } - - if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { - int j; - - cs->num_list_regs = cpu->gic_num_lrs ?: 4; - cs->vpribits = cpu->gic_vpribits ?: 5; - cs->vprebits = cpu->gic_vprebits ?: 5; - - /* Check against architectural constraints: getting these - * wrong would be a bug in the CPU code defining these, - * and the implementation relies on them holding. - */ - g_assert(cs->vprebits <= cs->vpribits); - g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); - g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); - - define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); - - for (j = 0; j < cs->num_list_regs; j++) { - /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs - * are split into two cp15 regs, LR (the low part, with the - * same encoding as the AArch64 LR) and LRC (the high part). + if (qemu_enabled_cpu(CPU(cpu))) { + GICv3CPUState *cs = icc_cs_from_env(&cpu->env); + gicv3_init_cpu_reginfo(CPU(cpu)); + if (tcg_enabled() || qtest_enabled()) { + /* + * We can only trap EL changes with TCG. However the GIC + * interrupt state only changes on EL changes involving EL2 or + * EL3, so for the non-TCG case this is OK, as EL2 and EL3 can't + * exist. */ - ARMCPRegInfo lr_regset[] = { - { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 12, - .crm = 12 + (j >> 3), .opc2 = j & 7, - .type = ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL2_RW, - .readfn = ich_lr_read, - .writefn = ich_lr_write, - }, - { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 12, - .crm = 14 + (j >> 3), .opc2 = j & 7, - .type = ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL2_RW, - .readfn = ich_lr_read, - .writefn = ich_lr_write, - }, - }; - define_arm_cp_regs(cpu, lr_regset); - } - if (cs->vprebits >= 6) { - define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); - } - if (cs->vprebits == 7) { - define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); + arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, + cs); + } else { + assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); + assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); } } - if (tcg_enabled() || qtest_enabled()) { - /* - * We can only trap EL changes with TCG. However the GIC interrupt - * state only changes on EL changes involving EL2 or EL3, so for - * the non-TCG case this is OK, as EL2 and EL3 can't exist. - */ - arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); - } else { - assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); - assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); - } } } diff --git a/hw/intc/arm_gicv3_kvm.c b/hw/intc/arm_gicv3_kvm.c index b6f50caf84..67985e4a21 100644 --- a/hw/intc/arm_gicv3_kvm.c +++ b/hw/intc/arm_gicv3_kvm.c @@ -804,6 +804,10 @@ static void vm_change_state_handler(void *opaque, bool running, } } +static void kvm_gicv3_init_cpu_reginfo(CPUState *cs) +{ + define_arm_cp_regs(ARM_CPU(cs), gicv3_cpuif_reginfo); +} static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) { @@ -837,7 +841,7 @@ static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) for (i = 0; i < s->num_cpu; i++) { CPUState *cs = qemu_get_cpu(i); if (qemu_enabled_cpu(cs)) { - define_arm_cp_regs(ARM_CPU(cs), gicv3_cpuif_reginfo); + kvm_gicv3_init_cpu_reginfo(cs); } } @@ -926,6 +930,7 @@ static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data) agcc->pre_save = kvm_arm_gicv3_get; agcc->post_load = kvm_arm_gicv3_put; + agcc->init_cpu_reginfo = kvm_gicv3_init_cpu_reginfo; device_class_set_parent_realize(dc, kvm_arm_gicv3_realize, &kgc->parent_realize); resettable_class_set_parent_phases(rc, NULL, kvm_arm_gicv3_reset_hold, NULL, diff --git a/hw/intc/gicv3_internal.h b/hw/intc/gicv3_internal.h index 9d4c1209bd..0bed0f6e2a 100644 --- a/hw/intc/gicv3_internal.h +++ b/hw/intc/gicv3_internal.h @@ -709,6 +709,7 @@ void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr); void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns); void gicv3_init_cpuif(GICv3State *s); +void gicv3_init_cpu_reginfo(CPUState *cs); /** * gicv3_cpuif_update: diff --git a/include/hw/intc/arm_gicv3_common.h b/include/hw/intc/arm_gicv3_common.h index 97a48f44b9..b5f8ba17ff 100644 --- a/include/hw/intc/arm_gicv3_common.h +++ b/include/hw/intc/arm_gicv3_common.h @@ -325,6 +325,7 @@ struct ARMGICv3CommonClass { void (*pre_save)(GICv3State *s); void (*post_load)(GICv3State *s); + void (*init_cpu_reginfo)(CPUState *cs); }; void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, -- 2.34.1