* Joe Mario (jma...@redhat.com) wrote: > On Thu, Jul 22, 2021 at 3:14 PM Dr. David Alan Gilbert <dgilb...@redhat.com> > wrote: > > > * Richard Henderson (richard.hender...@linaro.org) wrote: > > > On 7/22/21 12:02 AM, Dr. David Alan Gilbert wrote: > > > > Hi Richard, > > > > I think you were the last person to fiddle with the prefetching > > > > in buffer_zero_avx2 and friends; Joe (cc'd) wondered if explicit > > > > prefetching still made sense on modern CPUs, and that their hardware > > > > generally figures stuff out better on simple increments. > > > > > > > > What was your thinking on this, and did you actually measure > > > > any improvement? > > > > > > Ah, well, that was 5 years ago so I have no particular memory of this. > > It > > > wouldn't surprise me if you can't measure any improvement on modern > > > hardware. > > > > > > Do you now measure an improvement with the prefetches gone? > > > > Not tried, it just came from Joe's suggestion that it was generally a > > bad idea these days; I do remember that the behaviour of those functions > > is quite tricky because there performance is VERY data dependent - many > > VMs actually have pages that are quite dirty so you never iterate the > > loop, but then you hit others with big zero pages and you spend your > > entire life in the loop. > > > > > Dave, Richard: > My curiosity got the best of me. So I created a small test program that > used the buffer_zero_avx2() routine from qemu's bufferiszero.c.
Thanks for testing, > When I run it on an Intel Cascade Lake processor, the cost of calling > "__builtin_prefetch(p)" is in the noise range . It's always "just > slightly" slower. I doubt it could ever be measured in qemu. > > Ironically, when I disabled the hardware prefetchers, the program slowed > down over 33%. And the call to "__builtin_prefetch(p)" actually hurt > performance by over 3%. Yeh that's a bit odd. > My results are below, (only with the hardware prefetchers enabled). The > program is attached. > Joe > > # gcc -mavx buffer_zero_avx.c -O -DDO_PREFETCH ; for i in {1..5}; do > ./a.out; done > TSC 356144 Kcycles. > TSC 356714 Kcycles. > TSC 356707 Kcycles. > TSC 356565 Kcycles. > TSC 356853 Kcycles. > # gcc -mavx buffer_zero_avx.c -O ; for i in {1..5}; do ./a.out; done > TSC 355520 Kcycles. > TSC 355961 Kcycles. > TSC 355872 Kcycles. > TSC 355948 Kcycles. > TSC 355918 Kcycles. This basically agrees with the machines I've just tried your test on - *except* AMD EPYC 7302P's - that really like the prefetch: [root@virtlab720 ~]# gcc -mavx buffer_zero_avx.c -O -DDO_PREFETCH ; for i in {1..5}; do ./a.out; done TSC 322162 Kcycles. TSC 321861 Kcycles. TSC 322212 Kcycles. TSC 321957 Kcycles. TSC 322085 Kcycles. [root@virtlab720 ~]# gcc -mavx buffer_zero_avx.c -O ; for i in {1..5}; do ./a.out; done TSC 377988 Kcycles. TSC 380125 Kcycles. TSC 379440 Kcycles. TSC 379689 Kcycles. TSC 379571 Kcycles. The 1st gen doesn't seem to see much difference with/without it. Probably best to leave this code as is! Dave > Dave > > > > > > r~ > > > > > -- > > Dr. David Alan Gilbert / dgilb...@redhat.com / Manchester, UK > > > > > /* > * Simple program to test if a prefetch helps or hurts buffer_zero_avx2. > * > * Compile with either: > * gcc -mavx buffer_zero_avx.c -O > * or > * gcc -mavx buffer_zero_avx.c -O -DDO_PREFETCH > */ > > #include <immintrin.h> > #include <stdio.h> > #include <stdint.h> > #include <stddef.h> > #include <sys/mman.h> > #include <string.h> > > #define likely(x) __builtin_expect((x),1) > #define unlikely(x) __builtin_expect((x),0) > > static __inline__ u_int64_t start_clock(); > static __inline__ u_int64_t stop_clock(); > static int buffer_zero_avx2(const void *buf, size_t len); > > /* > * Allocate a large chuck of anon memory, touch/zero it, > * and then time the call to buffer_zero_avx2(). > */ > int main() > { > long i; > size_t mmap_len = 2UL*1024*1024*1024; > char *ptr = mmap(NULL, mmap_len, > PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0L); > > if (ptr == MAP_FAILED) { > perror(" mmap"); > exit(1); > } > > // Touch the pages (they're already cleared) > memset(ptr,0x0,mmap_len); > > u_int64_t start_rdtsc = start_clock(); > > buffer_zero_avx2(ptr, mmap_len); > > u_int64_t stop_rdtsc = stop_clock(); > u_int64_t diff = stop_rdtsc - start_rdtsc; > > printf("TSC %ld Kcycles. \n", diff/1000); > > } > > static int > buffer_zero_avx2(const void *buf, size_t len) > { > /* Begin with an unaligned head of 32 bytes. */ > __m256i t = _mm256_loadu_si256(buf); > __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32); > __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32); > > if (likely(p <= e)) { > /* Loop over 32-byte aligned blocks of 128. */ > do { > #ifdef DO_PREFETCH > __builtin_prefetch(p); > #endif > if (unlikely(!_mm256_testz_si256(t, t))) { > printf("In unlikely buffer_zero, p:%lx \n",p); > return 0; > } > t = p[-4] | p[-3] | p[-2] | p[-1]; > p += 4; > } while (p <= e); > } else { > t |= _mm256_loadu_si256(buf + 32); > if (len <= 128) { > goto last2; > } > } > > /* Finish the last block of 128 unaligned. */ > t |= _mm256_loadu_si256(buf + len - 4 * 32); > t |= _mm256_loadu_si256(buf + len - 3 * 32); > last2: > t |= _mm256_loadu_si256(buf + len - 2 * 32); > t |= _mm256_loadu_si256(buf + len - 1 * 32); > > // printf("End of buffer_zero_avx2\n"); > return _mm256_testz_si256(t, t); > } > > static __inline__ u_int64_t > start_clock() { > // See: Intel Doc #324264, "How to Benchmark Code Execution Times on > Intel...", > u_int32_t hi, lo; > __asm__ __volatile__ ( > "CPUID\n\t" > "RDTSC\n\t" > "mov %%edx, %0\n\t" > "mov %%eax, %1\n\t": "=r" (hi), "=r" (lo):: > "%rax", "%rbx", "%rcx", "%rdx"); > return ( (u_int64_t)lo) | ( ((u_int64_t)hi) << 32); > } > > static __inline__ u_int64_t > stop_clock() { > // See: Intel Doc #324264, "How to Benchmark Code Execution Times on > Intel...", > u_int32_t hi, lo; > __asm__ __volatile__( > "RDTSCP\n\t" > "mov %%edx, %0\n\t" > "mov %%eax, %1\n\t" > "CPUID\n\t": "=r" (hi), "=r" (lo):: > "%rax", "%rbx", "%rcx", "%rdx"); > return ( (u_int64_t)lo) | ( ((u_int64_t)hi) << 32); > } > > -- Dr. David Alan Gilbert / dgilb...@redhat.com / Manchester, UK