macros to interface with the generator macros referenced in instruction semantics
Signed-off-by: Taylor Simpson <tsimp...@quicinc.com> --- target/hexagon/macros.h | 22 ++ target/hexagon/mmvec/macros.h | 478 ++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 500 insertions(+) create mode 100644 target/hexagon/mmvec/macros.h diff --git a/target/hexagon/macros.h b/target/hexagon/macros.h index 094b8da..852183f 100644 --- a/target/hexagon/macros.h +++ b/target/hexagon/macros.h @@ -269,6 +269,10 @@ static inline void gen_pred_cancel(TCGv pred, int slot_num) #define fNEWREG_ST(VAL) (VAL) +#define fVSATUVALN(N, VAL) \ + ({ \ + (((int)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \ + }) #define fSATUVALN(N, VAL) \ ({ \ fSET_OVERFLOW(); \ @@ -279,10 +283,16 @@ static inline void gen_pred_cancel(TCGv pred, int slot_num) fSET_OVERFLOW(); \ ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ }) +#define fVSATVALN(N, VAL) \ + ({ \ + ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \ + }) #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL) #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL) #define fSATN(N, VAL) \ ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL)) +#define fVSATN(N, VAL) \ + ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL)) #define fADDSAT64(DST, A, B) \ do { \ uint64_t __a = fCAST8u(A); \ @@ -305,12 +315,18 @@ static inline void gen_pred_cancel(TCGv pred, int slot_num) DST = __sum; \ } \ } while (0) +#define fVSATUN(N, VAL) \ + ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL)) #define fSATUN(N, VAL) \ ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL)) #define fSATH(VAL) (fSATN(16, VAL)) #define fSATUH(VAL) (fSATUN(16, VAL)) +#define fVSATH(VAL) (fVSATN(16, VAL)) +#define fVSATUH(VAL) (fVSATUN(16, VAL)) #define fSATUB(VAL) (fSATUN(8, VAL)) #define fSATB(VAL) (fSATN(8, VAL)) +#define fVSATUB(VAL) (fVSATUN(8, VAL)) +#define fVSATB(VAL) (fVSATN(8, VAL)) #define fIMMEXT(IMM) (IMM = IMM) #define fMUST_IMMEXT(IMM) fIMMEXT(IMM) @@ -417,6 +433,8 @@ static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift) #define fCAST4s(A) ((int32_t)(A)) #define fCAST8u(A) ((uint64_t)(A)) #define fCAST8s(A) ((int64_t)(A)) +#define fCAST2_2s(A) ((int16_t)(A)) +#define fCAST2_2u(A) ((uint16_t)(A)) #define fCAST4_4s(A) ((int32_t)(A)) #define fCAST4_4u(A) ((uint32_t)(A)) #define fCAST4_8s(A) ((int64_t)((int32_t)(A))) @@ -514,7 +532,9 @@ static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift) #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0) #endif #define fSCALE(N, A) (((int64_t)(A)) << N) +#define fVSATW(A) fVSATN(32, ((long long)A)) #define fSATW(A) fSATN(32, ((long long)A)) +#define fVSAT(A) fVSATN(32, (A)) #define fSAT(A) fSATN(32, (A)) #define fSAT_ORIG_SHL(A, ORIG_REG) \ ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \ @@ -651,12 +671,14 @@ static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift) fSETBIT(j, DST, VAL); \ } \ } while (0) +#define fCOUNTONES_2(VAL) ctpop16(VAL) #define fCOUNTONES_4(VAL) ctpop32(VAL) #define fCOUNTONES_8(VAL) ctpop64(VAL) #define fBREV_8(VAL) revbit64(VAL) #define fBREV_4(VAL) revbit32(VAL) #define fCL1_8(VAL) clo64(VAL) #define fCL1_4(VAL) clo32(VAL) +#define fCL1_2(VAL) count_leading_ones_2(VAL) #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN) #define fDEINTERLEAVE(MIXED) deinterleave(MIXED) #define fHIDE(A) A diff --git a/target/hexagon/mmvec/macros.h b/target/hexagon/mmvec/macros.h new file mode 100644 index 0000000..52a5b87 --- /dev/null +++ b/target/hexagon/mmvec/macros.h @@ -0,0 +1,478 @@ +/* + * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <http://www.gnu.org/licenses/>. + */ + +#ifndef HEXAGON_MMVEC_MACROS_H +#define HEXAGON_MMVEC_MACROS_H + +#include "qemu/osdep.h" +#include "qemu/host-utils.h" +#include "arch.h" +#include "mmvec/system_ext_mmvec.h" + +#ifndef QEMU_GENERATE +#define VdV (*(MMVector *)(VdV_void)) +#define VsV (*(MMVector *)(VsV_void)) +#define VuV (*(MMVector *)(VuV_void)) +#define VvV (*(MMVector *)(VvV_void)) +#define VwV (*(MMVector *)(VwV_void)) +#define VxV (*(MMVector *)(VxV_void)) +#define VyV (*(MMVector *)(VyV_void)) + +#define VddV (*(MMVectorPair *)(VddV_void)) +#define VuuV (*(MMVectorPair *)(VuuV_void)) +#define VvvV (*(MMVectorPair *)(VvvV_void)) +#define VxxV (*(MMVectorPair *)(VxxV_void)) + +#define QeV (*(MMQReg *)(QeV_void)) +#define QdV (*(MMQReg *)(QdV_void)) +#define QsV (*(MMQReg *)(QsV_void)) +#define QtV (*(MMQReg *)(QtV_void)) +#define QuV (*(MMQReg *)(QuV_void)) +#define QvV (*(MMQReg *)(QvV_void)) +#define QxV (*(MMQReg *)(QxV_void)) +#endif + +#define NEW_WRITTEN(NUM) ((env->VRegs_select >> (NUM)) & 1) +#define TMP_WRITTEN(NUM) ((env->VRegs_updated_tmp >> (NUM)) & 1) + +#define TYPE_VOID(X) __builtin_types_compatible_p(typeof(X), void *) +#define TYPE_MMVECTOR(X) __builtin_types_compatible_p(typeof(X), MMVector) + +#define LOG_VREG_WRITE_FUNC(X) \ + __builtin_choose_expr(TYPE_VOID(X), \ + log_vreg_write, \ + __builtin_choose_expr(TYPE_MMVECTOR(X), \ + log_mmvector_write, (void)0)) +#define LOG_VREG_WRITE(NUM, VAR, VNEW) \ + LOG_VREG_WRITE_FUNC(VAR)(env, NUM, VAR, VNEW) + +#define READ_EXT_VREG(NUM, VAR, VTMP) \ + do { \ + VAR = ((NEW_WRITTEN(NUM)) ? env->future_VRegs[NUM] \ + : env->VRegs[NUM]); \ + VAR = ((TMP_WRITTEN(NUM)) ? env->tmp_VRegs[NUM] : VAR); \ + if (VTMP == EXT_TMP) { \ + if (env->VRegs_updated & ((VRegMask)1) << (NUM)) { \ + VAR = env->future_VRegs[NUM]; \ + env->VRegs_updated ^= ((VRegMask)1) << (NUM); \ + } \ + } \ + } while (0) + + +#define WRITE_EXT_VREG(NUM, VAR, VNEW) LOG_VREG_WRITE(NUM, VAR, VNEW) + +#define LOG_VTCM_BYTE(VA, MASK, VAL, IDX) \ + do { \ + env->vtcm_log.data.ub[IDX] = (VAL); \ + env->vtcm_log.mask.ub[IDX] = (MASK); \ + env->vtcm_log.va[IDX] = (VA); \ + } while (0) + +#define fNOTQ(VAL) \ + ({ \ + MMQReg _ret; \ + int _i_; \ + for (_i_ = 0; _i_ < fVECSIZE() / 64; _i_++) { \ + _ret.ud[_i_] = ~VAL.ud[_i_]; \ + } \ + _ret;\ + }) +#define fGETQBITS(REG, WIDTH, MASK, BITNO) \ + ((MASK) & (REG.w[(BITNO) >> 5] >> ((BITNO) & 0x1f))) +#define fGETQBIT(REG, BITNO) fGETQBITS(REG, 1, 1, BITNO) +#define fGENMASKW(QREG, IDX) \ + (((fGETQBIT(QREG, (IDX * 4 + 0)) ? 0xFF : 0x0) << 0) | \ + ((fGETQBIT(QREG, (IDX * 4 + 1)) ? 0xFF : 0x0) << 8) | \ + ((fGETQBIT(QREG, (IDX * 4 + 2)) ? 0xFF : 0x0) << 16) | \ + ((fGETQBIT(QREG, (IDX * 4 + 3)) ? 0xFF : 0x0) << 24)) +#define fGETNIBBLE(IDX, SRC) (fSXTN(4, 8, (SRC >> (4 * IDX)) & 0xF)) +#define fGETCRUMB(IDX, SRC) (fSXTN(2, 8, (SRC >> (2 * IDX)) & 0x3)) +#define fGETCRUMB_SYMMETRIC(IDX, SRC) \ + ((fGETCRUMB(IDX, SRC) >= 0 ? (2 - fGETCRUMB(IDX, SRC)) \ + : fGETCRUMB(IDX, SRC))) +#define fGENMASKH(QREG, IDX) \ + (((fGETQBIT(QREG, (IDX * 2 + 0)) ? 0xFF : 0x0) << 0) | \ + ((fGETQBIT(QREG, (IDX * 2 + 1)) ? 0xFF : 0x0) << 8)) +#define fGETMASKW(VREG, QREG, IDX) (VREG.w[IDX] & fGENMASKW((QREG), IDX)) +#define fGETMASKH(VREG, QREG, IDX) (VREG.h[IDX] & fGENMASKH((QREG), IDX)) +#define fCONDMASK8(QREG, IDX, YESVAL, NOVAL) \ + (fGETQBIT(QREG, IDX) ? (YESVAL) : (NOVAL)) +#define fCONDMASK16(QREG, IDX, YESVAL, NOVAL) \ + ((fGENMASKH(QREG, IDX) & (YESVAL)) | \ + (fGENMASKH(fNOTQ(QREG), IDX) & (NOVAL))) +#define fCONDMASK32(QREG, IDX, YESVAL, NOVAL) \ + ((fGENMASKW(QREG, IDX) & (YESVAL)) | \ + (fGENMASKW(fNOTQ(QREG), IDX) & (NOVAL))) +#define fSETQBITS(REG, WIDTH, MASK, BITNO, VAL) \ + do { \ + uint32_t __TMP = (VAL); \ + REG.w[(BITNO) >> 5] &= ~((MASK) << ((BITNO) & 0x1f)); \ + REG.w[(BITNO) >> 5] |= (((__TMP) & (MASK)) << ((BITNO) & 0x1f)); \ + } while (0) +#define fSETQBIT(REG, BITNO, VAL) fSETQBITS(REG, 1, 1, BITNO, VAL) +#define fVBYTES() (fVECSIZE()) +#define fVALIGN(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR & ~(LOG2_ALIGNMENT - 1)) +#define fVLASTBYTE(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR | (LOG2_ALIGNMENT - 1)) +#define fVELEM(WIDTH) ((fVECSIZE() * 8) / WIDTH) +#define fVECLOGSIZE() (7) +#define fVECSIZE() (1 << fVECLOGSIZE()) +#define fSWAPB(A, B) do { uint8_t tmp = A; A = B; B = tmp; } while (0) +static inline MMVector mmvec_zero_vector(void) +{ + MMVector ret; + memset(&ret, 0, sizeof(ret)); + return ret; +} +#define fVZERO() mmvec_zero_vector() +#define fNEWVREG(VNUM) \ + ((env->VRegs_updated & (((VRegMask)1) << VNUM)) ? env->future_VRegs[VNUM] \ + : mmvec_zero_vector()) +#define fV_AL_CHECK(EA, MASK) \ + if ((EA) & (MASK)) { \ + warn("aligning misaligned vector. EA=%08x", (EA)); \ + } +#define fSCATTER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \ + mem_vector_scatter_init(env, slot, REGION_START, LENGTH, ELEMENT_SIZE) +#define fGATHER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \ + mem_vector_gather_init(env, slot, REGION_START, LENGTH, ELEMENT_SIZE) +#define fSCATTER_FINISH(OP) +#define fGATHER_FINISH() +#define fLOG_SCATTER_OP(SIZE) \ + do { \ + env->vtcm_log.op = true; \ + env->vtcm_log.op_size = SIZE; \ + } while (0) +#define fVLOG_VTCM_WORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \ + do { \ + int log_byte = 0; \ + target_ulong va = EA; \ + target_ulong va_high = EA + LEN; \ + for (int i0 = 0; i0 < 4; i0++) { \ + log_byte = (va + i0) <= va_high; \ + LOG_VTCM_BYTE(va + i0, log_byte, INC. ub[4 * IDX + i0], \ + 4 * IDX + i0); \ + } \ + } while (0) +#define fVLOG_VTCM_HALFWORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \ + do { \ + int log_byte = 0; \ + target_ulong va = EA; \ + target_ulong va_high = EA + LEN; \ + for (int i0 = 0; i0 < 2; i0++) { \ + log_byte = (va + i0) <= va_high; \ + LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \ + 2 * IDX + i0); \ + } \ + } while (0) + +#define fVLOG_VTCM_HALFWORD_INCREMENT_DV(EA, OFFSET, INC, IDX, IDX2, IDX_H, \ + ALIGNMENT, LEN) \ + do { \ + int log_byte = 0; \ + target_ulong va = EA; \ + target_ulong va_high = EA + LEN; \ + for (int i0 = 0; i0 < 2; i0++) { \ + log_byte = (va + i0) <= va_high; \ + LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \ + 2 * IDX + i0); \ + } \ + } while (0) + +/* NOTE - Will this always be tmp_VRegs[0]; */ +#define GATHER_FUNCTION(EA, OFFSET, IDX, LEN, ELEMENT_SIZE, BANK_IDX, QVAL) \ + do { \ + int i0; \ + target_ulong va = EA; \ + target_ulong va_high = EA + LEN; \ + int log_bank = 0; \ + int log_byte = 0; \ + for (i0 = 0; i0 < ELEMENT_SIZE; i0++) { \ + log_byte = ((va + i0) <= va_high) && QVAL; \ + log_bank |= (log_byte << i0); \ + uint8_t B; \ + get_user_u8(B, EA + i0); \ + env->tmp_VRegs[0].ub[ELEMENT_SIZE * IDX + i0] = B; \ + LOG_VTCM_BYTE(va + i0, log_byte, B, ELEMENT_SIZE * IDX + i0); \ + } \ + } while (0) +#define fVLOG_VTCM_GATHER_WORD(EA, OFFSET, IDX, LEN) \ + do { \ + GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1); \ + } while (0) +#define fVLOG_VTCM_GATHER_HALFWORD(EA, OFFSET, IDX, LEN) \ + do { \ + GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1); \ + } while (0) +#define fVLOG_VTCM_GATHER_HALFWORD_DV(EA, OFFSET, IDX, IDX2, IDX_H, LEN) \ + do { \ + GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), 1); \ + } while (0) +#define fVLOG_VTCM_GATHER_WORDQ(EA, OFFSET, IDX, Q, LEN) \ + do { \ + GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \ + fGETQBIT(QsV, 4 * IDX + i0)); \ + } while (0) +#define fVLOG_VTCM_GATHER_HALFWORDQ(EA, OFFSET, IDX, Q, LEN) \ + do { \ + GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \ + fGETQBIT(QsV, 2 * IDX + i0)); \ + } while (0) +#define fVLOG_VTCM_GATHER_HALFWORDQ_DV(EA, OFFSET, IDX, IDX2, IDX_H, Q, LEN) \ + do { \ + GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \ + fGETQBIT(QsV, 2 * IDX + i0)); \ + } while (0) +#define SCATTER_OP_WRITE_TO_MEM(TYPE) \ + do { \ + for (int i = 0; i < env->vtcm_log.size; i += sizeof(TYPE)) { \ + if (env->vtcm_log.mask.ub[i] != 0) { \ + TYPE dst = 0; \ + TYPE inc = 0; \ + for (int j = 0; j < sizeof(TYPE); j++) { \ + uint8_t val; \ + get_user_u8(val, env->vtcm_log.va[i + j]); \ + dst |= val << (8 * j); \ + inc |= env->vtcm_log.data.ub[j + i] << (8 * j); \ + env->vtcm_log.mask.ub[j + i] = 0; \ + env->vtcm_log.data.ub[j + i] = 0; \ + } \ + dst += inc; \ + for (int j = 0; j < sizeof(TYPE); j++) { \ + put_user_u8((dst >> (8 * j)) & 0xFF, \ + env->vtcm_log.va[i + j]); \ + } \ + } \ + } \ + } while (0) +#define SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, ELEM_SIZE, BANK_IDX, QVAL, IN) \ + do { \ + int i0; \ + target_ulong va = EA; \ + target_ulong va_high = EA + LEN; \ + int log_bank = 0; \ + int log_byte = 0; \ + for (i0 = 0; i0 < ELEM_SIZE; i0++) { \ + log_byte = ((va + i0) <= va_high) && QVAL; \ + log_bank |= (log_byte << i0); \ + LOG_VTCM_BYTE(va + i0, log_byte, IN.ub[ELEM_SIZE * IDX + i0], \ + ELEM_SIZE * IDX + i0); \ + } \ + } while (0) +#define fVLOG_VTCM_HALFWORD(EA, OFFSET, IN, IDX, LEN) \ + do { \ + SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1, IN); \ + } while (0) +#define fVLOG_VTCM_WORD(EA, OFFSET, IN, IDX, LEN) \ + do { \ + SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1, IN); \ + } while (0) +#define fVLOG_VTCM_HALFWORDQ(EA, OFFSET, IN, IDX, Q, LEN) \ + do { \ + SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \ + fGETQBIT(QsV, 2 * IDX + i0), IN); \ + } while (0) +#define fVLOG_VTCM_WORDQ(EA, OFFSET, IN, IDX, Q, LEN) \ + do { \ + SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \ + fGETQBIT(QsV, 4 * IDX + i0), IN); \ + } while (0) +#define fVLOG_VTCM_HALFWORD_DV(EA, OFFSET, IN, IDX, IDX2, IDX_H, LEN) \ + do { \ + SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, \ + (2 * IDX2 + IDX_H), 1, IN); \ + } while (0) +#define fVLOG_VTCM_HALFWORDQ_DV(EA, OFFSET, IN, IDX, Q, IDX2, IDX_H, LEN) \ + do { \ + SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \ + fGETQBIT(QsV, 2 * IDX + i0), IN); \ + } while (0) +#define fSTORERELEASE(EA, TYPE) \ + do { \ + fV_AL_CHECK(EA, fVECSIZE() - 1); \ + } while (0) +#define fLOADMMV_AL(EA, ALIGNMENT, LEN, DST) \ + do { \ + fV_AL_CHECK(EA, ALIGNMENT - 1); \ + mem_load_vector(env, EA & ~(ALIGNMENT - 1), LEN, &DST.ub[0]); \ + } while (0) +#define fLOADMMV(EA, DST) fLOADMMV_AL(EA, fVECSIZE(), fVECSIZE(), DST) +#define fLOADMMVU_AL(EA, ALIGNMENT, LEN, DST) \ + do { \ + uint32_t size2 = (EA) & (ALIGNMENT - 1); \ + uint32_t size1 = LEN - size2; \ + mem_load_vector(env, EA + size1, size2, &DST.ub[size1]); \ + mem_load_vector(env, EA, size1, &DST.ub[0]); \ + } while (0) +#define fLOADMMVU(EA, DST) \ + do { \ + if ((EA & (fVECSIZE() - 1)) == 0) { \ + fLOADMMV_AL(EA, fVECSIZE(), fVECSIZE(), DST); \ + } else { \ + fLOADMMVU_AL(EA, fVECSIZE(), fVECSIZE(), DST); \ + } \ + } while (0) +#define fSTOREMMV_AL(EA, ALIGNMENT, LEN, SRC) \ + do { \ + fV_AL_CHECK(EA, ALIGNMENT - 1); \ + mem_store_vector(env, EA & ~(ALIGNMENT - 1), slot, LEN, \ + &SRC.ub[0], NULL, false); \ + } while (0) +#define fSTOREMMV(EA, SRC) fSTOREMMV_AL(EA, fVECSIZE(), fVECSIZE(), SRC) +#define fSTOREMMVQ_AL(EA, ALIGNMENT, LEN, SRC, MASK) \ + do { \ + MMVector maskvec; \ + int i; \ + for (i = 0; i < fVECSIZE(); i++) { \ + maskvec.ub[i] = fGETQBIT(MASK, i); \ + } \ + mem_store_vector(env, EA & ~(ALIGNMENT - 1), slot, LEN, \ + &SRC.ub[0], &maskvec.ub[0], false); \ + } while (0) +#define fSTOREMMVQ(EA, SRC, MASK) \ + fSTOREMMVQ_AL(EA, fVECSIZE(), fVECSIZE(), SRC, MASK) +#define fSTOREMMVNQ_AL(EA, ALIGNMENT, LEN, SRC, MASK) \ + do { \ + MMVector maskvec; \ + int i; \ + for (i = 0; i < fVECSIZE(); i++) { \ + maskvec.ub[i] = fGETQBIT(MASK, i); \ + } \ + fV_AL_CHECK(EA, ALIGNMENT - 1); \ + mem_store_vector(env, EA & ~(ALIGNMENT - 1), slot, LEN, \ + &SRC.ub[0], &maskvec.ub[0], true); \ + } while (0) +#define fSTOREMMVNQ(EA, SRC, MASK) \ + fSTOREMMVNQ_AL(EA, fVECSIZE(), fVECSIZE(), SRC, MASK) +#define fSTOREMMVU_AL(EA, ALIGNMENT, LEN, SRC) \ + do { \ + uint32_t size1 = ALIGNMENT - ((EA) & (ALIGNMENT - 1)); \ + uint32_t size2; \ + if (size1 > LEN) { \ + size1 = LEN; \ + } \ + size2 = LEN - size1; \ + mem_store_vector(env, EA + size1, 1, size2, \ + &SRC.ub[size1], NULL, false); \ + mem_store_vector(env, EA, 0, size1, &SRC.ub[0], NULL, false); \ + } while (0) +#define fSTOREMMVU(EA, SRC) \ + do { \ + if ((EA & (fVECSIZE() - 1)) == 0) { \ + fSTOREMMV_AL(EA, fVECSIZE(), fVECSIZE(), SRC); \ + } else { \ + fSTOREMMVU_AL(EA, fVECSIZE(), fVECSIZE(), SRC); \ + } \ + } while (0) +#define fSTOREMMVQU_AL(EA, ALIGNMENT, LEN, SRC, MASK) \ + do { \ + uint32_t size1 = ALIGNMENT - ((EA) & (ALIGNMENT - 1)); \ + uint32_t size2; \ + MMVector maskvec; \ + int i; \ + for (i = 0; i < fVECSIZE(); i++) { \ + maskvec.ub[i] = fGETQBIT(MASK, i); \ + } \ + if (size1 > LEN) { \ + size1 = LEN; \ + } \ + size2 = LEN - size1; \ + mem_store_vector(env, EA + size1, 1, size2, \ + &SRC.ub[size1], &maskvec.ub[size1], false); \ + mem_store_vector(env, EA, size1, &SRC.ub[0], &maskvec.ub[0], false); \ + } while (0) +#define fSTOREMMVNQU_AL(EA, ALIGNMENT, LEN, SRC, MASK) \ + do { \ + uint32_t size1 = ALIGNMENT - ((EA) & (ALIGNMENT - 1)); \ + uint32_t size2; \ + MMVector maskvec; \ + int i; \ + for (i = 0; i < fVECSIZE(); i++) { \ + maskvec.ub[i] = fGETQBIT(MASK, i); \ + } \ + if (size1 > LEN) { \ + size1 = LEN; \ + } \ + size2 = LEN - size1; \ + mem_store_vector(env, EA + size1, 1, size2, \ + &SRC.ub[size1], &maskvec.ub[size1], true); \ + mem_store_vector(env, EA, 0, size1, &SRC.ub[0], \ + &maskvec.ub[0], true); \ + } while (0) +#define fVFOREACH(WIDTH, VAR) for (VAR = 0; VAR < fVELEM(WIDTH); VAR++) +#define fVARRAY_ELEMENT_ACCESS(ARRAY, TYPE, INDEX) \ + ARRAY.v[(INDEX) / (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))].TYPE[(INDEX) % \ + (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))] + +#ifndef QEMU_GENERATE +/* Grabs the .tmp data, wherever it is, and clears the .tmp status */ +/* Used for vhist */ +static inline MMVector mmvec_vtmp_data(CPUHexagonState *env) +{ + VRegMask vsel = env->VRegs_updated_tmp; + MMVector ret; + int idx = clo32(~revbit32(vsel)); + if (vsel == 0) { + printf("[UNDEFINED] no .tmp load when implicitly required..."); + } + ret = env->tmp_VRegs[idx]; + env->VRegs_updated_tmp = 0; + return ret; +} +#define fTMPVDATA() mmvec_vtmp_data(env) +#endif +#define fVSATDW(U, V) fVSATW(((((long long)U) << 32) | fZXTN(32, 64, V))) +#define fVASL_SATHI(U, V) fVSATW(((U) << 1) | ((V) >> 31)) +#define fVUADDSAT(WIDTH, U, V) \ + fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) +#define fVSADDSAT(WIDTH, U, V) \ + fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) +#define fVUSUBSAT(WIDTH, U, V) \ + fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) +#define fVSSUBSAT(WIDTH, U, V) \ + fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) +#define fVAVGU(WIDTH, U, V) \ + ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) >> 1) +#define fVAVGURND(WIDTH, U, V) \ + ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) +#define fVNAVGU(WIDTH, U, V) \ + ((fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) >> 1) +#define fVNAVGURNDSAT(WIDTH, U, V) \ + fVSATUN(WIDTH, ((fZXTN(WIDTH, 2 * WIDTH, U) - \ + fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)) +#define fVAVGS(WIDTH, U, V) \ + ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) >> 1) +#define fVAVGSRND(WIDTH, U, V) \ + ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) +#define fVNAVGS(WIDTH, U, V) \ + ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) >> 1) +#define fVNAVGSRND(WIDTH, U, V) \ + ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1) +#define fVNAVGSRNDSAT(WIDTH, U, V) \ + fVSATN(WIDTH, ((fSXTN(WIDTH, 2 * WIDTH, U) - \ + fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)) +#define fVNOROUND(VAL, SHAMT) VAL +#define fVNOSAT(VAL) VAL +#define fVROUND(VAL, SHAMT) \ + ((VAL) + (((SHAMT) > 0) ? (1LL << ((SHAMT) - 1)) : 0)) +#define fCARRY_FROM_ADD32(A, B, C) \ + (((fZXTN(32, 64, A) + fZXTN(32, 64, B) + C) >> 32) & 1) +#define fUARCH_NOTE_PUMP_4X() +#define fUARCH_NOTE_PUMP_2X() + +#define IV1DEAD() +#endif -- 2.7.4