Thanks John and Peter for guiding me, but still it will be hard to
understand from source code for a newbie.

I basically want to implement a trivial device for arm architecture which
basically contains register for read/write operation with a program.So what
are the references?

I am providing pointers about my device which I am trying to implement:
 - I am implementing a device which will be attached to *versatilepb*
board, that board has* ARM926 CPU*.
- My device name is "*soc*" , whose description is in *qemu/hw/misc/soc.c*
file attached below.
- I have written below line to make my device available to qemu in
*qemu/hw/misc/Makefile.objs*.

> *$ common-obj-$(CONFIG_SOC) += soc.o *
>
- I added following lines in *qemu/hw/arm/versatilepb.c* to attach my
device to board.

>
> *#define DES_BASEADDR        0x101f5000*
>
>
>
> *    soc=qdev_create(NULL, "soc");// +    qdev_init_nofail(soc);// +
> sysbus_mmio_map(SYS_BUS_DEVICE(soc), 0, DES_BASEADDR);// +*
>

- Run below commands to build my device

> *$ make distclean*
> *$ make -j8 -C build *
>

- Run below command to run a bare metal program on device.

> *$ ./qemu-system-arm -M versatilepb -nographic -kernel
> /lhome/priyamvad/debian_qemu_arm32/c_application/DES/des_demo.elf*
>

-I get following output in terminal shown below

>
>
> *[priyamvad@predator arm-softmmu]$ ./qemu-system-arm -M versatilepb
> -nographic -kernel
> /lhome/priyamvad/debian_qemu_arm32/c_application/DES/des_demo.elf
> qemu-system-arm: Unknown device 'soc' for default sysbusAborted (core
> dumped)*
>

-Here des_demo.elf is our *bare metal program* executable for *arm(926ej-s)*
processor.

So how to resolve below issue to run executable

>
>
> *[priyamvad@predator arm-softmmu]$ ./qemu-system-arm -M versatilepb
> -nographic -kernel
> /lhome/priyamvad/debian_qemu_arm32/c_application/DES/des_demo.elf
> qemu-system-arm: Unknown device 'soc' for default sysbusAborted (core
> dumped)*
>

test.s,test.ld,startup.S,Makefile,des_demo.c are files required for bare
> metal program
>

References:

https://devkail.wordpress.com/2014/12/16/emulation-of-des-encryption-device-in-qemu/

Thanks,
Priyamvad

On Thu, 19 Mar 2020 at 01:19, John Snow <js...@redhat.com> wrote:

>
>
> On 3/18/20 7:09 AM, Peter Maydell wrote:
> > On Wed, 18 Mar 2020 at 09:55, Priyamvad Acharya
> > <priyamvad.agni...@gmail.com> wrote:
> >>
> >> Hello developer community,
> >>
> >> I am working on implementing a custom device in Qemu, so to implement
> it I need documentation of functions which are used to emulate a hardware
> model in Qemu.
> >>
> >> What are the references to get it ?
> >
> > QEMU has very little documentation of its internals;
> > the usual practice is to figure things out by
> > reading the source code. What we do have is in
> > docs/devel. There are also often documentation comments
> > for specific functions in the include files where
> > those functions are declared, which form the API
> > documentation for them.
> >
>
> ^ Unfortunately true. One thing you can do is try to pick an existing
> device that's close to yours -- some donor PCI, USB etc device and start
> using that as a reference.
>
> If you can share (broad) details of what device you are trying to
> implement, we might be able to point you to relevant examples to use as
> a reference.
>
> --js
>
>
/*
 * Data Encryption Standard (DES) device
 * for virtex-ml507
 * Written by Liang Kaiyuan <kaiyu...@tju.edu.cn>
 * for testing and research
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU GPLv2 as published by
 * Free Software Foundation, or any later version. See the COPING
 * file in the top-level directory.
 */
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "hw/hw.h"
#include "hw/sysbus.h"
#include "qemu/main-loop.h"
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/pci/msi.h"
#include "qemu/timer.h"
#include "qemu/module.h"
#include "qapi/visitor.h"

typedef struct {
    unsigned char k[8];
    unsigned char c[4];
    unsigned char d[4];
} key_set;

void generate_key(unsigned char* key);
void generate_sub_keys(unsigned char* main_key, key_set* key_sets);
void process_message(unsigned char* message_piece, unsigned char* processed_piece, key_set* key_sets, int mode);
void print_char_as_binary(char input);
void print_key_set(key_set key_set);


int bread(unsigned char* block, int size, unsigned char* str, int *index);
int bwrite(unsigned char* block, int size, unsigned char* str, int *index);
int bstrlen(unsigned char* str);

#define ENCRYPTION_MODE 1
#define DECRYPTION_MODE 0
#define GENERATEKEY_MODE 2
#define DONE_MODE 3
#define REGS_OFFSET 0x1000
#define REG_KEY_ADDR_OFFSET 0x0000
#define REG_IN_ADDR_OFFSET 0x0004
#define REG_OUT_ADDR_OFFSET 0x0008
#define REG_MODE_OFFSET 0x000C

/*#define DES_DEBUG*/

typedef struct SoCDESState{
    SysBusDevice parent_obj;
    MemoryRegion mmio;
    QEMUBH *bh;
    qemu_irq irq;
    
    uint32_t reg_key_addr;
    uint32_t reg_in_addr;
    uint32_t reg_out_addr;
    uint32_t reg_mode;
}SoCDESState;

#define TYPE_SOC_DES "soc"
#define SOC_DES(obj) \
    OBJECT_CHECK(SoCDESState, (obj), TYPE_SOC_DES)
    

static uint64_t soc_des_read(void *opaque, hwaddr offset, unsigned size)
{
#ifdef DES_DEBUG
    printf("begin soc_des_read\n");
    printf("offset 0x%x\t size 0x%x\n", (unsigned int)offset, size);
#endif

    SoCDESState *s = opaque;
    uint32_t ret = 0;
    switch(offset)
    {
    case REG_KEY_ADDR_OFFSET:
        ret = s->reg_key_addr;
        break;
    case REG_OUT_ADDR_OFFSET:
        ret = s->reg_out_addr;
        break;
    case REG_MODE_OFFSET:
        ret = s->reg_mode;
        break;
    default:
        printf("bad offset 0x%x\n", (int)offset);
    }
    
#ifdef DES_DEBUG
    printf("offset 0x%x, value 0x%x\n", (int)offset, ret);
    printf("finish soc_des_read\n");
#endif

    return ret;
}

static void soc_des_write(void *opaque, hwaddr offset, uint64_t value, unsigned size)
{
#ifdef DES_DEBUG
    printf("begin soc_des_write\n");
    printf("offset 0x%x\t size 0x%x\n", (unsigned)offset, size);
    printf("value x0%x\n", (unsigned)value);
#endif

    SoCDESState *s = opaque;

    switch(offset)
    {
    case REG_KEY_ADDR_OFFSET:
        s->reg_key_addr = value;
        break;
    case REG_IN_ADDR_OFFSET:
        s->reg_in_addr = value;
        break;
    case REG_OUT_ADDR_OFFSET:
        s->reg_out_addr = value;
        break;
    case REG_MODE_OFFSET:
        s->reg_mode = value;       

        unsigned char* des_key = (unsigned char*)malloc(8*sizeof(char));    
        unsigned char* data_block = NULL;
        unsigned char* processed_block = NULL;
        key_set* key_sets;
        
        int index_key = 0;
        int index_in = 0;
        int index_out = 0;
        char tz = '\0';

        switch(s->reg_mode)
        {
        case GENERATEKEY_MODE:         
            generate_key(des_key);
            bwrite(des_key, 8, (unsigned char*)s->reg_key_addr, &index_key);
            bwrite(&tz, 1, (unsigned char*)s->reg_key_addr, &index_key);
            s->reg_mode = DONE_MODE;
            break;
            
        case ENCRYPTION_MODE:
            
        case DECRYPTION_MODE:
            bread(des_key, 8, (unsigned char*)s->reg_key_addr, &index_key);
            key_sets = (key_set*)malloc(17*sizeof(key_set));
            generate_sub_keys(des_key, key_sets);
            
            data_block = (unsigned char*)malloc(8*sizeof(char));
            processed_block = (unsigned char*)malloc(8*sizeof(char));
            
            int data_size = bstrlen((unsigned char*)s->reg_in_addr);
            int number_of_blocks = data_size/8 + ((data_size%8)?1:0);
            int block_count = 0;
            unsigned short int padding;
            
            while(bread(data_block, 8, (unsigned char*)s->reg_in_addr, &index_in))
            {
                block_count++;
                if(block_count == number_of_blocks)
                {
                    if(s->reg_mode == ENCRYPTION_MODE)
                    {
                        padding = 8 - data_size%8;
                        if(padding < 8)
                        {
                            memset((data_block + 8 - padding), (unsigned char)padding, padding);
                        }
                        
                        process_message(data_block, processed_block, key_sets, s->reg_mode);
                        bwrite(processed_block, 8, (unsigned char*)s->reg_out_addr, &index_out);
                        if(padding == 8)
                        {
                            memset(data_block, (unsigned char)padding, 8);
                            process_message(data_block, processed_block, key_sets, s->reg_mode);
                            bwrite(processed_block, 8, (unsigned char*)s->reg_out_addr, &index_out);
                        }
                    }
                    else
                    {
                        process_message(data_block, processed_block, key_sets, s->reg_mode);
                        padding = processed_block[7];
                        
                        if(padding < 8)
                        {
                            bwrite(processed_block, 8, (unsigned char*)s->reg_out_addr, &index_out);
                        }
                    }
                }
                else
                {
                    process_message(data_block, processed_block, key_sets, s->reg_mode);
                    bwrite(processed_block, 8, (unsigned char*)s->reg_out_addr, &index_out);
                }
                memset(data_block, 0, 8);
            }

            free(key_sets);
            free(data_block);
            free(processed_block);
            s->reg_mode = DONE_MODE;
            break;
        }
        
        free(des_key);
        break;
    default:
        printf("bad offset 0x%x\n", (int)offset);
    }
    
#ifdef DES_DEBUG
    printf("finish soc_des_write\n");
#endif

}


static const MemoryRegionOps soc_des_ops = {
    .read = soc_des_read,
    .write = soc_des_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 4
    }
};

static const VMStateDescription vmstate_soc_des = {
    .name = "soc",
    .version_id = 0,
    .minimum_version_id = 0,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(reg_key_addr, SoCDESState),
        VMSTATE_UINT32(reg_in_addr, SoCDESState),
        VMSTATE_UINT32(reg_out_addr, SoCDESState),
        VMSTATE_UINT32(reg_mode, SoCDESState),        
        VMSTATE_END_OF_LIST()
    }
};

static int soc_des_init(SysBusDevice *dev)
{
#ifdef DES_DEBUG
    printf("begin soc_des_init\n");
#endif
    
    SoCDESState *d = SOC_DES(dev);
    d->reg_key_addr = 0x0000;
    d->reg_in_addr= 0x0000;
    d->reg_out_addr = 0x0000;
    d->reg_mode = 0x0000;
    
    sysbus_init_irq(dev, &d->irq);
    memory_region_init_io(&d->mmio, OBJECT(d), &soc_des_ops, d, TYPE_SOC_DES, REGS_OFFSET);
    sysbus_init_mmio(dev, &d->mmio);
#ifdef DES_DEBUG
    printf("finish soc_des_init\n");
#endif

    return 0;
}

static void soc_des_class_init(ObjectClass *klass, void *data)
{
#ifdef DES_DEBUG
    printf("begin soc_des_class_init\n");
#endif

    DeviceClass *d = DEVICE_CLASS(klass);
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
    
    k->init = soc_des_init;
    d->vmsd = &vmstate_soc_des;
    
#ifdef DES_DEBUG
    printf("finish soc_des_class_init\n");
#endif

}

static const TypeInfo soc_des_info = {
    .name = TYPE_SOC_DES,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SoCDESState),
    .class_init = soc_des_class_init,
};

static void soc_des_register_types(void)
{
#ifdef DES_DEBUG
    printf("begin soc_des_register_types\n");
#endif

    type_register_static(&soc_des_info);
    
#ifdef DES_DEBUG
    printf("finish soc_des_register_types\n");
#endif

}

type_init(soc_des_register_types)



/*
 * Functions related to DES algorithm
 * Implemented by tarequeh
 * https://github.com/tarequeh/DES
 */

int initial_key_permutaion[] = {57, 49,  41, 33,  25,  17,  9,
                                 1, 58,  50, 42,  34,  26, 18,
                                10,  2,  59, 51,  43,  35, 27,
                                19, 11,   3, 60,  52,  44, 36,
                                63, 55,  47, 39,  31,  23, 15,
                                 7, 62,  54, 46,  38,  30, 22,
                                14,  6,  61, 53,  45,  37, 29,
                                21, 13,   5, 28,  20,  12,  4};

int initial_message_permutation[] =    {58, 50, 42, 34, 26, 18, 10, 2,
                                        60, 52, 44, 36, 28, 20, 12, 4,
                                        62, 54, 46, 38, 30, 22, 14, 6,
                                        64, 56, 48, 40, 32, 24, 16, 8,
                                        57, 49, 41, 33, 25, 17,  9, 1,
                                        59, 51, 43, 35, 27, 19, 11, 3,
                                        61, 53, 45, 37, 29, 21, 13, 5,
                                        63, 55, 47, 39, 31, 23, 15, 7};

int key_shift_sizes[] = {-1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};

int sub_key_permutation[] =    {14, 17, 11, 24,  1,  5,
                                 3, 28, 15,  6, 21, 10,
                                23, 19, 12,  4, 26,  8,
                                16,  7, 27, 20, 13,  2,
                                41, 52, 31, 37, 47, 55,
                                30, 40, 51, 45, 33, 48,
                                44, 49, 39, 56, 34, 53,
                                46, 42, 50, 36, 29, 32};

int message_expansion[] =  {32,  1,  2,  3,  4,  5,
                             4,  5,  6,  7,  8,  9,
                             8,  9, 10, 11, 12, 13,
                            12, 13, 14, 15, 16, 17,
                            16, 17, 18, 19, 20, 21,
                            20, 21, 22, 23, 24, 25,
                            24, 25, 26, 27, 28, 29,
                            28, 29, 30, 31, 32,  1};

int S1[] = {14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
             0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
             4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
            15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13};

int S2[] = {15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
             3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
             0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
            13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9};

int S3[] = {10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
            13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
            13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
             1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12};

int S4[] = { 7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
            13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
            10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
             3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14};

int S5[] = { 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
            14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
             4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
            11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3};

int S6[] = {12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
            10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
             9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
             4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13};

int S7[] = { 4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
            13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
             1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
             6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12};

int S8[] = {13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
             1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
             7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
             2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11};

int right_sub_message_permutation[] =    {16,  7, 20, 21,
                                    29, 12, 28, 17,
                                     1, 15, 23, 26,
                                     5, 18, 31, 10,
                                     2,  8, 24, 14,
                                    32, 27,  3,  9,
                                    19, 13, 30,  6,
                                    22, 11,  4, 25};

int final_message_permutation[] =  {40,  8, 48, 16, 56, 24, 64, 32,
                                    39,  7, 47, 15, 55, 23, 63, 31,
                                    38,  6, 46, 14, 54, 22, 62, 30,
                                    37,  5, 45, 13, 53, 21, 61, 29,
                                    36,  4, 44, 12, 52, 20, 60, 28,
                                    35,  3, 43, 11, 51, 19, 59, 27,
                                    34,  2, 42, 10, 50, 18, 58, 26,
                                    33,  1, 41,  9, 49, 17, 57, 25};


void print_char_as_binary(char input) {
    int i;
    for (i=0; i<8; i++) {
        char shift_byte = 0x01 << (7-i);
        if (shift_byte & input) {
            printf("1");
        } else {
            printf("0");
        }
    }
}

int bread(unsigned char* block, int size, unsigned char* str, int* index)
{
    int i;
    char c;
    for(i = 0; i < size; i++)
    {
        cpu_physical_memory_read(str + *index + i, &c, 1);
        if(!c)
            break;
        block[i] = c;
    }
    *index += i;
    return i;
}

int bwrite(unsigned char* block, int size, unsigned char* str, int* index)
{
    int i;
    char c;
    for(i = 0; i < size; i++)
    {
        c = block[i];
        cpu_physical_memory_write(str + *index + i, &c, 1);
    }
    *index += i;
    return i;
}

int bstrlen(unsigned char* str)
{
    int i;
    char c;
    for(i = 0; ; i++)
    {
        cpu_physical_memory_read(str + i, &c, 1);
        if(!c)
            break;
    }
    return i;
}

void generate_key(unsigned char* key) {
    int i;
    for (i=0; i<8; i++) {
        key[i] = rand()%255;
    }
}

void print_key_set(key_set key_set){
    int i;
    printf("K: \n");
    for (i=0; i<8; i++) {
        printf("%02X : ", key_set.k[i]);
        print_char_as_binary(key_set.k[i]);
        printf("\n");
    }
    printf("\nC: \n");

    for (i=0; i<4; i++) {
        printf("%02X : ", key_set.c[i]);
        print_char_as_binary(key_set.c[i]);
        printf("\n");
    }
    printf("\nD: \n");

    for (i=0; i<4; i++) {
        printf("%02X : ", key_set.d[i]);
        print_char_as_binary(key_set.d[i]);
        printf("\n");
    }
    printf("\n");
}

void generate_sub_keys(unsigned char* main_key, key_set* key_sets) {
    int i, j;
    int shift_size;
    unsigned char shift_byte, first_shift_bits, second_shift_bits, third_shift_bits, fourth_shift_bits;

    for (i=0; i<8; i++) {
        key_sets[0].k[i] = 0;
    }

    for (i=0; i<56; i++) {
        shift_size = initial_key_permutaion[i];
        shift_byte = 0x80 >> ((shift_size - 1)%8);
        shift_byte &= main_key[(shift_size - 1)/8];
        shift_byte <<= ((shift_size - 1)%8);

        key_sets[0].k[i/8] |= (shift_byte >> i%8);
    }

    for (i=0; i<3; i++) {
        key_sets[0].c[i] = key_sets[0].k[i];
    }

    key_sets[0].c[3] = key_sets[0].k[3] & 0xF0;

    for (i=0; i<3; i++) {
        key_sets[0].d[i] = (key_sets[0].k[i+3] & 0x0F) << 4;
        key_sets[0].d[i] |= (key_sets[0].k[i+4] & 0xF0) >> 4;
    }

    key_sets[0].d[3] = (key_sets[0].k[6] & 0x0F) << 4;


    for (i=1; i<17; i++) {
        for (j=0; j<4; j++) {
            key_sets[i].c[j] = key_sets[i-1].c[j];
            key_sets[i].d[j] = key_sets[i-1].d[j];
        }

        shift_size = key_shift_sizes[i];
        if (shift_size == 1){
            shift_byte = 0x80;
        } else {
            shift_byte = 0xC0;
        }

        // Process C
        first_shift_bits = shift_byte & key_sets[i].c[0];
        second_shift_bits = shift_byte & key_sets[i].c[1];
        third_shift_bits = shift_byte & key_sets[i].c[2];
        fourth_shift_bits = shift_byte & key_sets[i].c[3];

        key_sets[i].c[0] <<= shift_size;
        key_sets[i].c[0] |= (second_shift_bits >> (8 - shift_size));

        key_sets[i].c[1] <<= shift_size;
        key_sets[i].c[1] |= (third_shift_bits >> (8 - shift_size));

        key_sets[i].c[2] <<= shift_size;
        key_sets[i].c[2] |= (fourth_shift_bits >> (8 - shift_size));

        key_sets[i].c[3] <<= shift_size;
        key_sets[i].c[3] |= (first_shift_bits >> (4 - shift_size));

        // Process D
        first_shift_bits = shift_byte & key_sets[i].d[0];
        second_shift_bits = shift_byte & key_sets[i].d[1];
        third_shift_bits = shift_byte & key_sets[i].d[2];
        fourth_shift_bits = shift_byte & key_sets[i].d[3];

        key_sets[i].d[0] <<= shift_size;
        key_sets[i].d[0] |= (second_shift_bits >> (8 - shift_size));

        key_sets[i].d[1] <<= shift_size;
        key_sets[i].d[1] |= (third_shift_bits >> (8 - shift_size));

        key_sets[i].d[2] <<= shift_size;
        key_sets[i].d[2] |= (fourth_shift_bits >> (8 - shift_size));

        key_sets[i].d[3] <<= shift_size;
        key_sets[i].d[3] |= (first_shift_bits >> (4 - shift_size));

        for (j=0; j<48; j++) {
            shift_size = sub_key_permutation[j];
            if (shift_size <= 28) {
                shift_byte = 0x80 >> ((shift_size - 1)%8);
                shift_byte &= key_sets[i].c[(shift_size - 1)/8];
                shift_byte <<= ((shift_size - 1)%8);
            } else {
                shift_byte = 0x80 >> ((shift_size - 29)%8);
                shift_byte &= key_sets[i].d[(shift_size - 29)/8];
                shift_byte <<= ((shift_size - 29)%8);
            }

            key_sets[i].k[j/8] |= (shift_byte >> j%8);
        }
    }
}

void process_message(unsigned char* message_piece, unsigned char* processed_piece, key_set* key_sets, int mode) {
    int i, k;
    int shift_size;
    unsigned char shift_byte;

    unsigned char initial_permutation[8];
    memset(initial_permutation, 0, 8);
    memset(processed_piece, 0, 8);

    for (i=0; i<64; i++) {
        shift_size = initial_message_permutation[i];
        shift_byte = 0x80 >> ((shift_size - 1)%8);
        shift_byte &= message_piece[(shift_size - 1)/8];
        shift_byte <<= ((shift_size - 1)%8);

        initial_permutation[i/8] |= (shift_byte >> i%8);
    }

    unsigned char l[4], r[4];
    for (i=0; i<4; i++) {
        l[i] = initial_permutation[i];
        r[i] = initial_permutation[i+4];
    }

    unsigned char ln[4], rn[4], er[6], ser[4];

    int key_index;
    for (k=1; k<=16; k++) {
        memcpy(ln, r, 4);

        memset(er, 0, 6);

        for (i=0; i<48; i++) {
            shift_size = message_expansion[i];
            shift_byte = 0x80 >> ((shift_size - 1)%8);
            shift_byte &= r[(shift_size - 1)/8];
            shift_byte <<= ((shift_size - 1)%8);

            er[i/8] |= (shift_byte >> i%8);
        }

        if (mode == DECRYPTION_MODE) {
            key_index = 17 - k;
        } else {
            key_index = k;
        }

        for (i=0; i<6; i++) {
            er[i] ^= key_sets[key_index].k[i];
        }

        unsigned char row, column;

        for (i=0; i<4; i++) {
            ser[i] = 0;
        }

        // 0000 0000 0000 0000 0000 0000
        // rccc crrc cccr rccc crrc cccr

        // Byte 1
        row = 0;
        row |= ((er[0] & 0x80) >> 6);
        row |= ((er[0] & 0x04) >> 2);

        column = 0;
        column |= ((er[0] & 0x78) >> 3);

        ser[0] |= ((unsigned char)S1[row*16+column] << 4);

        row = 0;
        row |= (er[0] & 0x02);
        row |= ((er[1] & 0x10) >> 4);

        column = 0;
        column |= ((er[0] & 0x01) << 3);
        column |= ((er[1] & 0xE0) >> 5);

        ser[0] |= (unsigned char)S2[row*16+column];

        // Byte 2
        row = 0;
        row |= ((er[1] & 0x08) >> 2);
        row |= ((er[2] & 0x40) >> 6);

        column = 0;
        column |= ((er[1] & 0x07) << 1);
        column |= ((er[2] & 0x80) >> 7);

        ser[1] |= ((unsigned char)S3[row*16+column] << 4);

        row = 0;
        row |= ((er[2] & 0x20) >> 4);
        row |= (er[2] & 0x01);

        column = 0;
        column |= ((er[2] & 0x1E) >> 1);

        ser[1] |= (unsigned char)S4[row*16+column];

        // Byte 3
        row = 0;
        row |= ((er[3] & 0x80) >> 6);
        row |= ((er[3] & 0x04) >> 2);

        column = 0;
        column |= ((er[3] & 0x78) >> 3);

        ser[2] |= ((unsigned char)S5[row*16+column] << 4);

        row = 0;
        row |= (er[3] & 0x02);
        row |= ((er[4] & 0x10) >> 4);

        column = 0;
        column |= ((er[3] & 0x01) << 3);
        column |= ((er[4] & 0xE0) >> 5);

        ser[2] |= (unsigned char)S6[row*16+column];

        // Byte 4
        row = 0;
        row |= ((er[4] & 0x08) >> 2);
        row |= ((er[5] & 0x40) >> 6);

        column = 0;
        column |= ((er[4] & 0x07) << 1);
        column |= ((er[5] & 0x80) >> 7);

        ser[3] |= ((unsigned char)S7[row*16+column] << 4);

        row = 0;
        row |= ((er[5] & 0x20) >> 4);
        row |= (er[5] & 0x01);

        column = 0;
        column |= ((er[5] & 0x1E) >> 1);

        ser[3] |= (unsigned char)S8[row*16+column];

        for (i=0; i<4; i++) {
            rn[i] = 0;
        }

        for (i=0; i<32; i++) {
            shift_size = right_sub_message_permutation[i];
            shift_byte = 0x80 >> ((shift_size - 1)%8);
            shift_byte &= ser[(shift_size - 1)/8];
            shift_byte <<= ((shift_size - 1)%8);

            rn[i/8] |= (shift_byte >> i%8);
        }

        for (i=0; i<4; i++) {
            rn[i] ^= l[i];
        }

        for (i=0; i<4; i++) {
            l[i] = ln[i];
            r[i] = rn[i];
        }
    }

    unsigned char pre_end_permutation[8];
    for (i=0; i<4; i++) {
        pre_end_permutation[i] = r[i];
        pre_end_permutation[4+i] = l[i];
    }

    for (i=0; i<64; i++) {
        shift_size = final_message_permutation[i];
        shift_byte = 0x80 >> ((shift_size - 1)%8);
        shift_byte &= pre_end_permutation[(shift_size - 1)/8];
        shift_byte <<= ((shift_size - 1)%8);

        processed_piece[i/8] |= (shift_byte >> i%8);
    }
}

Attachment: test.s
Description: Binary data

Attachment: Makefile
Description: Binary data

Attachment: startup.S
Description: Binary data

Attachment: test.ld
Description: Binary data

/*
 * This is a demo program to verify the function of DES device
 */ 

#define UART0_BASEADDR  0x101f1000
#define DES_BASEADDR 0x101f5000
#define ENCRYPTION_MODE 1
#define DECRYPTION_MODE 0
#define GENERATEKEY_MODE 2
#define DONE_MODE 3
#define REG_KEY_ADDR_OFFSET 0x0000
#define REG_IN_ADDR_OFFSET 0x0004
#define REG_OUT_ADDR_OFFSET 0x0008
#define REG_MODE_OFFSET 0x000C
#define OUT_SIZE_MAX 100

volatile unsigned int * const UART0DR = (unsigned int *) UART0_BASEADDR;

void print_uart0(volatile char *s)
{
    while(*s != '\0') 
    {
        *UART0DR = (unsigned int)(*s);
        s++;
    }
}

void main()
{
    volatile unsigned int* reg_key_addr = (volatile unsigned int*)(DES_BASEADDR + REG_KEY_ADDR_OFFSET);
    volatile unsigned int* reg_in_addr = (volatile unsigned int*)(DES_BASEADDR + REG_IN_ADDR_OFFSET);
    volatile unsigned int* reg_out_addr = (volatile unsigned int*)(DES_BASEADDR + REG_OUT_ADDR_OFFSET);
    volatile unsigned int* reg_mode = (volatile unsigned int*)(DES_BASEADDR + REG_MODE_OFFSET);
    
    unsigned char key[9];
    unsigned char* plain = "hello, world";
    unsigned char cipher[OUT_SIZE_MAX];
    unsigned char decrypted[OUT_SIZE_MAX];
    unsigned char* pstr;

    print_uart0("hello, des\n");
    print_uart0("plain text is ");
    print_uart0(plain);
    print_uart0("\n");


    /*Generate key*/
    print_uart0("start generating key\n");
    *reg_key_addr = key;
    *reg_mode = GENERATEKEY_MODE;
    while(*reg_mode != DONE_MODE ) {}
    pstr = (unsigned char*)(*reg_key_addr);
    print_uart0("key is ");
    print_uart0(pstr);
    print_uart0("\n");

    /*Encryption*/
    print_uart0("start encrypting\n");
    *reg_in_addr = plain;
    *reg_out_addr = cipher;
    *reg_mode = ENCRYPTION_MODE;
    while(*reg_mode != DONE_MODE) {}
    pstr = (unsigned char*)(*reg_out_addr);
    print_uart0("cipher text is ");
    print_uart0(pstr);
    print_uart0("\n");
    
    /*Decryption*/
    print_uart0("start decryption\n");
    *reg_in_addr = cipher;
    *reg_out_addr = decrypted;
    *reg_mode = DECRYPTION_MODE;
    while(*reg_mode != DONE_MODE) {}
    pstr = (unsigned char*)(*reg_out_addr);
    print_uart0("decrypted text is ");
    print_uart0(pstr);
    print_uart0("\n");
}

Reply via email to