Hi all.

As for now I have no plans to add support for AVR 32 bit CPU. If there are
requests I might consider it.
When I started to implement AVR 8 bit CPU I added that `#ifndef
CONFIG_USER_ONLY` as other CPUs did, so I guess they could be removed.

Regards,
Michael Rolnik

On Mon, Jan 27, 2020 at 4:39 AM Aleksandar Markovic <
aleksandar.m.m...@gmail.com> wrote:

> > +static void avr_cpu_initfn(Object *obj)
> > +{
> > +    AVRCPU *cpu = AVR_CPU(obj);
> > +
> > +    cpu_set_cpustate_pointers(cpu);
> > +
> > +#ifndef CONFIG_USER_ONLY
> > +    /* Set the number of interrupts supported by the CPU. */
> > +    qdev_init_gpio_in(DEVICE(cpu), avr_cpu_set_int,
> > +            sizeof(cpu->env.intsrc) * 8);
> > +#endif
> > +}
>
> A question for Michael:
>
> What is CONFIG_USER_ONLY doing here, if we know AVR cores from this
> series doesn't have and will never have user mode, since they do not
> work with the kernel?
>
> Do you plan to support some AVR 32-bit CPUs in the same file, which
> would be able to have linux-user mode? But, in this case, many files
> must be completely redone. My advice is to separate them completely,
> and that this file supports only 8-bit AVR cores, and in that case
> checks for CONFIG_USER_ONLY do not make sense.
>
> Regards,
> Aleksandar
>
> > +
> > +static ObjectClass *avr_cpu_class_by_name(const char *cpu_model)
> > +{
> > +    ObjectClass *oc;
> > +
> > +    oc = object_class_by_name(cpu_model);
> > +    if (object_class_dynamic_cast(oc, TYPE_AVR_CPU) == NULL ||
> > +        object_class_is_abstract(oc)) {
> > +        oc = NULL;
> > +    }
> > +    return oc;
> > +}
> > +
> > +static void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags)
> > +{
> > +    AVRCPU *cpu = AVR_CPU(cs);
> > +    CPUAVRState *env = &cpu->env;
> > +    int i;
> > +
> > +    qemu_fprintf(f, "\n");
> > +    qemu_fprintf(f, "PC:    %06x\n", env->pc_w);
> > +    qemu_fprintf(f, "SP:      %04x\n", env->sp);
> > +    qemu_fprintf(f, "rampD:     %02x\n", env->rampD >> 16);
> > +    qemu_fprintf(f, "rampX:     %02x\n", env->rampX >> 16);
> > +    qemu_fprintf(f, "rampY:     %02x\n", env->rampY >> 16);
> > +    qemu_fprintf(f, "rampZ:     %02x\n", env->rampZ >> 16);
> > +    qemu_fprintf(f, "EIND:      %02x\n", env->eind >> 16);
> > +    qemu_fprintf(f, "X:       %02x%02x\n", env->r[27], env->r[26]);
> > +    qemu_fprintf(f, "Y:       %02x%02x\n", env->r[29], env->r[28]);
> > +    qemu_fprintf(f, "Z:       %02x%02x\n", env->r[31], env->r[30]);
> > +    qemu_fprintf(f, "SREG:    [ %c %c %c %c %c %c %c %c ]\n",
> > +                        env->sregI ? 'I' : '-',
> > +                        env->sregT ? 'T' : '-',
> > +                        env->sregH ? 'H' : '-',
> > +                        env->sregS ? 'S' : '-',
> > +                        env->sregV ? 'V' : '-',
> > +                        env->sregN ? '-' : 'N', /* Zf has negative
> logic */
> > +                        env->sregZ ? 'Z' : '-',
> > +                        env->sregC ? 'I' : '-');
> > +    qemu_fprintf(f, "SKIP:    %02x\n", env->skip);
> > +
> > +    qemu_fprintf(f, "\n");
> > +    for (i = 0; i < ARRAY_SIZE(env->r); i++) {
> > +        qemu_fprintf(f, "R[%02d]:  %02x   ", i, env->r[i]);
> > +
> > +        if ((i % 8) == 7) {
> > +            qemu_fprintf(f, "\n");
> > +        }
> > +    }
> > +    qemu_fprintf(f, "\n");
> > +}
> > +
> > +static void avr_cpu_class_init(ObjectClass *oc, void *data)
> > +{
> > +    DeviceClass *dc = DEVICE_CLASS(oc);
> > +    CPUClass *cc = CPU_CLASS(oc);
> > +    AVRCPUClass *mcc = AVR_CPU_CLASS(oc);
> > +
> > +    mcc->parent_realize = dc->realize;
> > +    dc->realize = avr_cpu_realizefn;
> > +
> > +    mcc->parent_reset = cc->reset;
> > +    cc->reset = avr_cpu_reset;
> > +
> > +    cc->class_by_name = avr_cpu_class_by_name;
> > +
> > +    cc->has_work = avr_cpu_has_work;
> > +    cc->do_interrupt = avr_cpu_do_interrupt;
> > +    cc->cpu_exec_interrupt = avr_cpu_exec_interrupt;
> > +    cc->dump_state = avr_cpu_dump_state;
> > +    cc->set_pc = avr_cpu_set_pc;
> > +#if !defined(CONFIG_USER_ONLY)
> > +    cc->memory_rw_debug = avr_cpu_memory_rw_debug;
> > +#endif
> > +#ifdef CONFIG_USER_ONLY
> > +    cc->handle_mmu_fault = avr_cpu_handle_mmu_fault;
> > +#else
> > +    cc->get_phys_page_debug = avr_cpu_get_phys_page_debug;
> > +#endif
>
> The same question here.
>
> > +    cc->disas_set_info = avr_cpu_disas_set_info;
> > +    cc->tlb_fill = avr_cpu_tlb_fill;
> > +    cc->tcg_initialize = avr_cpu_tcg_init;
> > +    cc->synchronize_from_tb = avr_cpu_synchronize_from_tb;
> > +}
> > diff --git a/target/avr/cpu.h b/target/avr/cpu.h
> > index d122611..f7a403a 100644
> > --- a/target/avr/cpu.h
> > +++ b/target/avr/cpu.h
> > @@ -69,4 +69,138 @@
> >
> >  #define EF_AVR_MACH 0x7F
> >
> > +typedef struct CPUAVRState CPUAVRState;
> > +
> > +struct CPUAVRState {
> > +    uint32_t pc_w; /* 0x003fffff up to 22 bits */
> > +
> > +    uint32_t sregC; /* 0x00000001 1 bit */
> > +    uint32_t sregZ; /* 0x00000001 1 bit */
> > +    uint32_t sregN; /* 0x00000001 1 bit */
> > +    uint32_t sregV; /* 0x00000001 1 bit */
> > +    uint32_t sregS; /* 0x00000001 1 bit */
> > +    uint32_t sregH; /* 0x00000001 1 bit */
> > +    uint32_t sregT; /* 0x00000001 1 bit */
> > +    uint32_t sregI; /* 0x00000001 1 bit */
> > +
> > +    uint32_t rampD; /* 0x00ff0000 8 bits */
> > +    uint32_t rampX; /* 0x00ff0000 8 bits */
> > +    uint32_t rampY; /* 0x00ff0000 8 bits */
> > +    uint32_t rampZ; /* 0x00ff0000 8 bits */
> > +    uint32_t eind; /* 0x00ff0000 8 bits */
> > +
> > +    uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */
> > +    uint32_t sp; /* 16 bits */
> > +
> > +    uint32_t skip; /* if set skip instruction */
> > +
> > +    uint64_t intsrc; /* interrupt sources */
> > +    bool fullacc; /* CPU/MEM if true MEM only otherwise */
> > +
> > +    uint32_t features;
> > +};
> > +
> > +/**
> > + *  AVRCPU:
> > + *  @env: #CPUAVRState
> > + *
> > + *  A AVR CPU.
> > + */
> > +typedef struct AVRCPU {
> > +    /*< private >*/
> > +    CPUState parent_obj;
> > +    /*< public >*/
> > +
> > +    CPUNegativeOffsetState neg;
> > +    CPUAVRState env;
> > +} AVRCPU;
> > +
> > +void avr_cpu_do_interrupt(CPUState *cpu);
> > +bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
> > +hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
> > +
> > +#define cpu_list avr_cpu_list
> > +#define cpu_signal_handler cpu_avr_signal_handler
> > +#define cpu_mmu_index avr_cpu_mmu_index
> > +
> > +static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch)
> > +{
> > +    return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
> > +}
> > +
> > +void avr_cpu_tcg_init(void);
> > +
> > +void avr_cpu_list(void);
> > +int cpu_avr_exec(CPUState *cpu);
> > +int cpu_avr_signal_handler(int host_signum, void *pinfo, void *puc);
> > +int avr_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size,
> > +                                int rw, int mmu_idx);
> > +int avr_cpu_memory_rw_debug(CPUState *cs, vaddr address, uint8_t *buf,
> > +                                int len, bool is_write);
> > +
> > +enum {
> > +    TB_FLAGS_FULL_ACCESS = 1,
> > +    TB_FLAGS_SKIP = 2,
> > +};
> > +
> > +static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong
> *pc,
> > +                                target_ulong *cs_base, uint32_t *pflags)
> > +{
> > +    uint32_t flags = 0;
> > +
> > +    *pc = env->pc_w * 2;
> > +    *cs_base = 0;
> > +
> > +    if (env->fullacc) {
> > +        flags |= TB_FLAGS_FULL_ACCESS;
> > +    }
> > +    if (env->skip) {
> > +        flags |= TB_FLAGS_SKIP;
> > +    }
> > +
> > +    *pflags = flags;
> > +}
> > +
> > +static inline int cpu_interrupts_enabled(CPUAVRState *env)
> > +{
> > +    return env->sregI != 0;
> > +}
> > +
> > +static inline uint8_t cpu_get_sreg(CPUAVRState *env)
> > +{
> > +    uint8_t sreg;
> > +    sreg = (env->sregC) << 0
> > +         | (env->sregZ) << 1
> > +         | (env->sregN) << 2
> > +         | (env->sregV) << 3
> > +         | (env->sregS) << 4
> > +         | (env->sregH) << 5
> > +         | (env->sregT) << 6
> > +         | (env->sregI) << 7;
> > +    return sreg;
> > +}
> > +
> > +static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
> > +{
> > +    env->sregC = (sreg >> 0) & 0x01;
> > +    env->sregZ = (sreg >> 1) & 0x01;
> > +    env->sregN = (sreg >> 2) & 0x01;
> > +    env->sregV = (sreg >> 3) & 0x01;
> > +    env->sregS = (sreg >> 4) & 0x01;
> > +    env->sregH = (sreg >> 5) & 0x01;
> > +    env->sregT = (sreg >> 6) & 0x01;
> > +    env->sregI = (sreg >> 7) & 0x01;
> > +}
> > +
> > +bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
> > +                        MMUAccessType access_type, int mmu_idx,
> > +                        bool probe, uintptr_t retaddr);
> > +
> > +typedef CPUAVRState CPUArchState;
> > +typedef AVRCPU ArchCPU;
> > +
> > +#include "exec/cpu-all.h"
> > +
> > +const char *avr_flags_to_cpu_type(uint32_t flags, const char
> *def_cpu_type);
> > +
> >  #endif /* !defined (QEMU_AVR_CPU_H) */
> > --
> > 2.7.4
> >
>


-- 
Best Regards,
Michael Rolnik

Reply via email to