On Tue, Oct 01, 2019 at 03:52:46PM +0200, Andrew Jones wrote: > On Tue, Oct 01, 2019 at 02:58:41PM +0200, Andrew Jones wrote: > > These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the > > swabbing is different than it is for fpsmid because the vector format > > is a little-endian stream of words. > > > > Signed-off-by: Andrew Jones <drjo...@redhat.com> > > Hi Eric and Richard, > > I dropped your tags from this patch because it changed too much. > I apologize for requiring a second look.
Also it looks like I should have generated it with --patience, as this diff isn't the easiest thing to review. Let me know if you'd like me to repost it. drew > > Thanks, > drew > > > --- > > target/arm/kvm64.c | 183 ++++++++++++++++++++++++++++++++++++++------- > > 1 file changed, 155 insertions(+), 28 deletions(-) > > > > diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c > > index 28f6db57d5ee..4c0b11d105a4 100644 > > --- a/target/arm/kvm64.c > > +++ b/target/arm/kvm64.c > > @@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs) > > bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) > > { > > /* Return true if the regidx is a register we should synchronize > > - * via the cpreg_tuples array (ie is not a core reg we sync by > > - * hand in kvm_arch_get/put_registers()) > > + * via the cpreg_tuples array (ie is not a core or sve reg that > > + * we sync by hand in kvm_arch_get/put_registers()) > > */ > > switch (regidx & KVM_REG_ARM_COPROC_MASK) { > > case KVM_REG_ARM_CORE: > > + case KVM_REG_ARM64_SVE: > > return false; > > default: > > return true; > > @@ -721,10 +722,8 @@ int kvm_arm_cpreg_level(uint64_t regidx) > > > > static int kvm_arch_put_fpsimd(CPUState *cs) > > { > > - ARMCPU *cpu = ARM_CPU(cs); > > - CPUARMState *env = &cpu->env; > > + CPUARMState *env = &ARM_CPU(cs)->env; > > struct kvm_one_reg reg; > > - uint32_t fpr; > > int i, ret; > > > > for (i = 0; i < 32; i++) { > > @@ -742,17 +741,73 @@ static int kvm_arch_put_fpsimd(CPUState *cs) > > } > > } > > > > - reg.addr = (uintptr_t)(&fpr); > > - fpr = vfp_get_fpsr(env); > > - reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); > > - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); > > - if (ret) { > > - return ret; > > + return 0; > > +} > > + > > +/* > > + * SVE registers are encoded in KVM's memory in an endianness-invariant > > format. > > + * The byte at offset i from the start of the in-memory representation > > contains > > + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means > > the > > + * lowest offsets are stored in the lowest memory addresses, then that > > nearly > > + * matches QEMU's representation, which is to use an array of host-endian > > + * uint64_t's, where the lower offsets are at the lower indices. To > > complete > > + * the translation we just need to byte swap the uint64_t's on big-endian > > hosts. > > + */ > > +static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) > > +{ > > +#ifdef HOST_WORDS_BIGENDIAN > > + int i; > > + > > + for (i = 0; i < nr; ++i) { > > + dst[i] = bswap64(src[i]); > > } > > > > - reg.addr = (uintptr_t)(&fpr); > > - fpr = vfp_get_fpcr(env); > > - reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); > > + return dst; > > +#else > > + return src; > > +#endif > > +} > > + > > +/* > > + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 > > bits > > + * and PREGS and the FFR have a slice size of 256 bits. However we simply > > hard > > + * code the slice index to zero for now as it's unlikely we'll need more > > than > > + * one slice for quite some time. > > + */ > > +static int kvm_arch_put_sve(CPUState *cs) > > +{ > > + ARMCPU *cpu = ARM_CPU(cs); > > + CPUARMState *env = &cpu->env; > > + uint64_t tmp[ARM_MAX_VQ * 2]; > > + uint64_t *r; > > + struct kvm_one_reg reg; > > + int n, ret; > > + > > + for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { > > + r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); > > + reg.addr = (uintptr_t)r; > > + reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); > > + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); > > + if (ret) { > > + return ret; > > + } > > + } > > + > > + for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { > > + r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], > > + DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); > > + reg.addr = (uintptr_t)r; > > + reg.id = KVM_REG_ARM64_SVE_PREG(n, 0); > > + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); > > + if (ret) { > > + return ret; > > + } > > + } > > + > > + r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0], > > + DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); > > + reg.addr = (uintptr_t)r; > > + reg.id = KVM_REG_ARM64_SVE_FFR(0); > > ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); > > if (ret) { > > return ret; > > @@ -765,6 +820,7 @@ int kvm_arch_put_registers(CPUState *cs, int level) > > { > > struct kvm_one_reg reg; > > uint64_t val; > > + uint32_t fpr; > > int i, ret; > > unsigned int el; > > > > @@ -855,7 +911,27 @@ int kvm_arch_put_registers(CPUState *cs, int level) > > } > > } > > > > - ret = kvm_arch_put_fpsimd(cs); > > + if (cpu_isar_feature(aa64_sve, cpu)) { > > + ret = kvm_arch_put_sve(cs); > > + } else { > > + ret = kvm_arch_put_fpsimd(cs); > > + } > > + if (ret) { > > + return ret; > > + } > > + > > + reg.addr = (uintptr_t)(&fpr); > > + fpr = vfp_get_fpsr(env); > > + reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); > > + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); > > + if (ret) { > > + return ret; > > + } > > + > > + reg.addr = (uintptr_t)(&fpr); > > + fpr = vfp_get_fpcr(env); > > + reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); > > + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); > > if (ret) { > > return ret; > > } > > @@ -878,10 +954,8 @@ int kvm_arch_put_registers(CPUState *cs, int level) > > > > static int kvm_arch_get_fpsimd(CPUState *cs) > > { > > - ARMCPU *cpu = ARM_CPU(cs); > > - CPUARMState *env = &cpu->env; > > + CPUARMState *env = &ARM_CPU(cs)->env; > > struct kvm_one_reg reg; > > - uint32_t fpr; > > int i, ret; > > > > for (i = 0; i < 32; i++) { > > @@ -899,21 +973,53 @@ static int kvm_arch_get_fpsimd(CPUState *cs) > > } > > } > > > > - reg.addr = (uintptr_t)(&fpr); > > - reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); > > - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); > > - if (ret) { > > - return ret; > > + return 0; > > +} > > + > > +/* > > + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 > > bits > > + * and PREGS and the FFR have a slice size of 256 bits. However we simply > > hard > > + * code the slice index to zero for now as it's unlikely we'll need more > > than > > + * one slice for quite some time. > > + */ > > +static int kvm_arch_get_sve(CPUState *cs) > > +{ > > + ARMCPU *cpu = ARM_CPU(cs); > > + CPUARMState *env = &cpu->env; > > + struct kvm_one_reg reg; > > + uint64_t *r; > > + int n, ret; > > + > > + for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { > > + r = &env->vfp.zregs[n].d[0]; > > + reg.addr = (uintptr_t)r; > > + reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); > > + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); > > + if (ret) { > > + return ret; > > + } > > + sve_bswap64(r, r, cpu->sve_max_vq * 2); > > } > > - vfp_set_fpsr(env, fpr); > > > > - reg.addr = (uintptr_t)(&fpr); > > - reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); > > + for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { > > + r = &env->vfp.pregs[n].p[0]; > > + reg.addr = (uintptr_t)r; > > + reg.id = KVM_REG_ARM64_SVE_PREG(n, 0); > > + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); > > + if (ret) { > > + return ret; > > + } > > + sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); > > + } > > + > > + r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; > > + reg.addr = (uintptr_t)r; > > + reg.id = KVM_REG_ARM64_SVE_FFR(0); > > ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); > > if (ret) { > > return ret; > > } > > - vfp_set_fpcr(env, fpr); > > + sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); > > > > return 0; > > } > > @@ -923,6 +1029,7 @@ int kvm_arch_get_registers(CPUState *cs) > > struct kvm_one_reg reg; > > uint64_t val; > > unsigned int el; > > + uint32_t fpr; > > int i, ret; > > > > ARMCPU *cpu = ARM_CPU(cs); > > @@ -1012,10 +1119,30 @@ int kvm_arch_get_registers(CPUState *cs) > > env->spsr = env->banked_spsr[i]; > > } > > > > - ret = kvm_arch_get_fpsimd(cs); > > + if (cpu_isar_feature(aa64_sve, cpu)) { > > + ret = kvm_arch_get_sve(cs); > > + } else { > > + ret = kvm_arch_get_fpsimd(cs); > > + } > > + if (ret) { > > + return ret; > > + } > > + > > + reg.addr = (uintptr_t)(&fpr); > > + reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); > > + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); > > + if (ret) { > > + return ret; > > + } > > + vfp_set_fpsr(env, fpr); > > + > > + reg.addr = (uintptr_t)(&fpr); > > + reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); > > + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); > > if (ret) { > > return ret; > > } > > + vfp_set_fpcr(env, fpr); > > > > ret = kvm_get_vcpu_events(cpu); > > if (ret) { > > -- > > 2.20.1 > >