On Tue, Sep 24, 2019 at 01:31:01PM +0200, Andrew Jones wrote: > These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the > swabbing is different than it is for fpsmid because the vector format > is a little-endian stream of words. > > Signed-off-by: Andrew Jones <drjo...@redhat.com> > Reviewed-by: Richard Henderson <richard.hender...@linaro.org> > --- > target/arm/kvm64.c | 137 +++++++++++++++++++++++++++++++++++++++++++-- > 1 file changed, 133 insertions(+), 4 deletions(-) > > diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c > index 28f6db57d5ee..ea454c613919 100644 > --- a/target/arm/kvm64.c > +++ b/target/arm/kvm64.c > @@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs) > bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) > { > /* Return true if the regidx is a register we should synchronize > - * via the cpreg_tuples array (ie is not a core reg we sync by > - * hand in kvm_arch_get/put_registers()) > + * via the cpreg_tuples array (ie is not a core or sve reg that > + * we sync by hand in kvm_arch_get/put_registers()) > */ > switch (regidx & KVM_REG_ARM_COPROC_MASK) { > case KVM_REG_ARM_CORE: > + case KVM_REG_ARM64_SVE: > return false; > default: > return true; > @@ -761,6 +762,78 @@ static int kvm_arch_put_fpsimd(CPUState *cs) > return 0; > } > > +/* > + * SVE registers are encoded in KVM's memory in an endianness-invariant > format. > + * The byte at offset i from the start of the in-memory representation > contains > + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the > + * lowest offsets are stored in the lowest memory addresses, then that nearly > + * matches QEMU's representation, which is to use an array of host-endian > + * uint64_t's, where the lower offsets are at the lower indices. To complete > + * the translation we just need to byte swap the uint64_t's on big-endian > hosts. > + */ > +static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) > +{ > +#ifdef HOST_WORDS_BIGENDIAN > + int i; > + > + for (i = 0; i < nr; ++i) { > + dst[i] = bswap64(src[i]); > + } > + > + return dst; > +#else > + return src; > +#endif > +} > + > +/* > + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 > bits > + * and PREGS and the FFR have a slice size of 256 bits. However we simply > hard > + * code the slice index to zero for now as it's unlikely we'll need more than > + * one slice for quite some time. > + */ > +static int kvm_arch_put_sve(CPUState *cs) > +{ > + ARMCPU *cpu = ARM_CPU(cs); > + CPUARMState *env = &cpu->env; > + uint64_t tmp[ARM_MAX_VQ * 2]; > + uint64_t *r; > + struct kvm_one_reg reg; > + int n, ret; > + > + for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { > + r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); > + reg.addr = (uintptr_t)r; > + reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); > + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); > + if (ret) { > + return ret; > + } > + } > + > + for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { > + r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], > + DIV_ROUND_UP(cpu->sve_max_vq, 8));
I see a bug here that I introduced between v2 and v3 when I switched to DIV_ROUND_UP. I dropped the '* 2's on all of these. They should be DIV_ROUND_UP(cpu->sve_max_vq * 2, 8). I'll fix for v5, which I'll be posting later today. Thanks, drew