From: Liu Jingqi <jingqi....@intel.com> Add -numa hmat-lb option to provide System Locality Latency and Bandwidth Information. These memory attributes help to build System Locality Latency and Bandwidth Information Structure(s) in ACPI Heterogeneous Memory Attribute Table (HMAT).
Signed-off-by: Liu Jingqi <jingqi....@intel.com> Signed-off-by: Tao Xu <tao3...@intel.com> --- Changes in v9: - change the CLI input way, make it more user firendly (Daniel Black) use latency=NUM[p|n|u]s and bandwidth=NUM[M|G|P](B/s) as input and drop the base-lat and base-bw input. --- hw/acpi/hmat.h | 3 + hw/core/numa.c | 185 ++++++++++++++++++++++++++++++++++++++++++ include/sysemu/numa.h | 2 + qapi/machine.json | 95 +++++++++++++++++++++- qemu-options.hx | 44 +++++++++- 5 files changed, 326 insertions(+), 3 deletions(-) diff --git a/hw/acpi/hmat.h b/hw/acpi/hmat.h index 6c32f12e78..b7c1e02cf0 100644 --- a/hw/acpi/hmat.h +++ b/hw/acpi/hmat.h @@ -42,6 +42,9 @@ #define HMAT_IS_LATENCY(type) (type <= HMAT_LB_DATA_WRITE_LATENCY) +#define PICO_PER_USEC 1000000 +#define PICO_PER_NSEC 1000 + struct HMAT_LB_Info { /* * Indicates total number of Proximity Domains diff --git a/hw/core/numa.c b/hw/core/numa.c index cfb6339810..9a494145f3 100644 --- a/hw/core/numa.c +++ b/hw/core/numa.c @@ -37,6 +37,7 @@ #include "qemu/option.h" #include "qemu/config-file.h" #include "qemu/cutils.h" +#include "hw/acpi/hmat.h" QemuOptsList qemu_numa_opts = { .name = "numa", @@ -183,6 +184,184 @@ void parse_numa_distance(MachineState *ms, NumaDistOptions *dist, Error **errp) ms->numa_state->have_numa_distance = true; } +void parse_numa_hmat_lb(MachineState *ms, NumaHmatLBOptions *node, + Error **errp) +{ + int nb_numa_nodes = ms->numa_state->num_nodes; + NodeInfo *numa_info = ms->numa_state->nodes; + HMAT_LB_Info *hmat_lb = NULL; + const char *endptr; + int ret; + uint32_t latency, bandwidth; + uint64_t base_lat = 0, base_bw = 0; + + if (node->data_type <= HMATLB_DATA_TYPE_WRITE_LATENCY) { + if (!node->has_latency) { + error_setg(errp, "Missing 'latency' option."); + return; + } + if (node->has_bandwidth) { + error_setg(errp, "Invalid option 'bandwidth' since " + "the data type is latency."); + return; + } + } + + if (node->data_type >= HMATLB_DATA_TYPE_ACCESS_BANDWIDTH) { + if (!node->has_bandwidth) { + error_setg(errp, "Missing 'bandwidth' option."); + return; + } + if (node->has_latency) { + error_setg(errp, "Invalid option 'latency' since " + "the data type is bandwidth."); + return; + } + } + + if (node->initiator >= nb_numa_nodes) { + error_setg(errp, "Invalid initiator=%" + PRIu16 ", it should be less than %d.", + node->initiator, nb_numa_nodes); + return; + } + if (!numa_info[node->initiator].has_cpu) { + error_setg(errp, "Invalid initiator=%" + PRIu16 ", it isn't an initiator proximity domain.", + node->initiator); + return; + } + + if (node->target >= nb_numa_nodes) { + error_setg(errp, "Invalid target=%" + PRIu16 ", it should be less than %d.", + node->target, nb_numa_nodes); + return; + } + if (!numa_info[node->target].initiator_valid) { + error_setg(errp, "Invalid target=%" + PRIu16 ", it hasn't a valid initiator proximity domain.", + node->target); + return; + } + + if (node->has_latency) { + hmat_lb = ms->numa_state->hmat_lb[node->hierarchy][node->data_type]; + + if (!hmat_lb) { + hmat_lb = g_malloc0(sizeof(*hmat_lb)); + ms->numa_state->hmat_lb[node->hierarchy][node->data_type] = hmat_lb; + } else if (hmat_lb->latency[node->initiator][node->target]) { + error_setg(errp, "Duplicate configuration of the latency for " + "initiator=%" PRIu16 " and target=%" PRIu16 ".", + node->initiator, node->target); + return; + } + + ret = qemu_strtoui(node->latency, &endptr, 10, &latency); + if (ret < 0) { + error_setg(errp, "Invalid latency %s", node->latency); + return; + } + + if (*endptr == '\0') { + base_lat = 1; + } else if (*(endptr + 1) == 's') { + switch (*endptr) { + case 'p': + base_lat = 1; + break; + case 'n': + base_lat = PICO_PER_NSEC; + break; + case 'u': + base_lat = PICO_PER_USEC; + break; + } + } else { + error_setg(errp, "Invalid latency unit %s," + "vaild units are \"ps\" \"ns\" \"us\"", node->latency); + return; + } + + /* Only the first time of setting the base unit is valid. */ + if (hmat_lb->base_lat == 0) { + hmat_lb->base_lat = base_lat; + } else if (hmat_lb->base_lat != base_lat) { + error_setg(errp, "Invalid latency unit %s," + " please unify the units.", node->latency); + return; + } + + if (latency >= UINT16_MAX) { + error_setg(errp, "Latency value %s overflow, max value" + " is %" PRIu16, node->latency, UINT16_MAX - 1); + } + + hmat_lb->latency[node->initiator][node->target] = latency; + } + + if (node->has_bandwidth) { + hmat_lb = ms->numa_state->hmat_lb[node->hierarchy][node->data_type]; + + if (!hmat_lb) { + hmat_lb = g_malloc0(sizeof(*hmat_lb)); + ms->numa_state->hmat_lb[node->hierarchy][node->data_type] = hmat_lb; + } else if (hmat_lb->bandwidth[node->initiator][node->target]) { + error_setg(errp, "Duplicate configuration of the bandwidth for " + "initiator=%" PRIu16 " and target=%" PRIu16 ".", + node->initiator, node->target); + return; + } + + ret = qemu_strtoui(node->bandwidth, &endptr, 10, &bandwidth); + if (ret < 0) { + error_setg(errp, "Invalid bandwidth %s", node->bandwidth); + return; + } + + switch (toupper(*endptr)) { + case '\0': + case 'M': + base_bw = 1; + break; + case 'G': + base_bw = UINT64_C(1) << 10; + break; + case 'P': + base_bw = UINT64_C(1) << 20; + break; + } + + if (base_bw == 0) { + error_setg(errp, "Invalid bandwidth unit %s," + " vaild units are \"M\" \"G\" \"P\"", node->bandwidth); + return; + } + + /* Only the first time of setting the base unit is valid. */ + if (hmat_lb->base_bw == 0) { + hmat_lb->base_bw = base_bw; + } else if (hmat_lb->base_lat != base_lat) { + error_setg(errp, "Invalid bandwidth unit %s," + " please unify the units.", node->bandwidth); + return; + } + + if (bandwidth >= UINT16_MAX) { + error_setg(errp, "Bandwidth value %s overflow, max value" + " is %" PRIu16, node->bandwidth, UINT16_MAX - 1); + } + + hmat_lb->bandwidth[node->initiator][node->target] = bandwidth; + } + + if (hmat_lb) { + hmat_lb->hierarchy = node->hierarchy; + hmat_lb->data_type = node->data_type; + } +} + void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp) { Error *err = NULL; @@ -221,6 +400,12 @@ void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp) machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu), &err); break; + case NUMA_OPTIONS_TYPE_HMAT_LB: + parse_numa_hmat_lb(ms, &object->u.hmat_lb, &err); + if (err) { + goto end; + } + break; default: abort(); } diff --git a/include/sysemu/numa.h b/include/sysemu/numa.h index 1ed3362917..f0857b7ee6 100644 --- a/include/sysemu/numa.h +++ b/include/sysemu/numa.h @@ -41,6 +41,8 @@ typedef struct NumaState NumaState; void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp); void parse_numa_opts(MachineState *ms); +void parse_numa_hmat_lb(MachineState *ms, NumaHmatLBOptions *node, + Error **errp); void numa_complete_configuration(MachineState *ms); void query_numa_node_mem(NumaNodeMem node_mem[], MachineState *ms); extern QemuOptsList qemu_numa_opts; diff --git a/qapi/machine.json b/qapi/machine.json index 05e367d26a..f19c761e52 100644 --- a/qapi/machine.json +++ b/qapi/machine.json @@ -377,10 +377,12 @@ # # @cpu: property based CPU(s) to node mapping (Since: 2.10) # +# @hmat-lb: memory latency and bandwidth information (Since: 4.2) +# # Since: 2.1 ## { 'enum': 'NumaOptionsType', - 'data': [ 'node', 'dist', 'cpu' ] } + 'data': [ 'node', 'dist', 'cpu', 'hmat-lb' ] } ## # @NumaOptions: @@ -395,7 +397,8 @@ 'data': { 'node': 'NumaNodeOptions', 'dist': 'NumaDistOptions', - 'cpu': 'NumaCpuOptions' }} + 'cpu': 'NumaCpuOptions', + 'hmat-lb': 'NumaHmatLBOptions' }} ## # @NumaNodeOptions: @@ -504,6 +507,94 @@ 'base': 'CpuInstanceProperties', 'data' : {} } +## +# @HmatLBMemoryHierarchy: +# +# The memory hierarchy in the System Locality Latency +# and Bandwidth Information Structure of HMAT (Heterogeneous +# Memory Attribute Table) +# +# For more information of @HmatLBMemoryHierarchy see +# the chapter 5.2.27.4: Table 5-142: Field "Flags" of ACPI 6.3 spec. +# +# @memory: the structure represents the memory performance +# +# @first-level: first level memory of memory side cached memory +# +# @second-level: second level memory of memory side cached memory +# +# @third-level: third level memory of memory side cached memory +# +# Since: 4.2 +## +{ 'enum': 'HmatLBMemoryHierarchy', + 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } + +## +# @HmatLBDataType: +# +# Data type in the System Locality Latency +# and Bandwidth Information Structure of HMAT (Heterogeneous +# Memory Attribute Table) +# +# For more information of @HmatLBDataType see +# the chapter 5.2.27.4: Table 5-142: Field "Data Type" of ACPI 6.3 spec. +# +# @access-latency: access latency (picoseconds) +# +# @read-latency: read latency (picoseconds) +# +# @write-latency: write latency (picoseconds) +# +# @access-bandwidth: access bandwidth (MB/s) +# +# @read-bandwidth: read bandwidth (MB/s) +# +# @write-bandwidth: write bandwidth (MB/s) +# +# Since: 4.2 +## +{ 'enum': 'HmatLBDataType', + 'data': [ 'access-latency', 'read-latency', 'write-latency', + 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } + +## +# @NumaHmatLBOptions: +# +# Set the system locality latency and bandwidth information +# between Initiator and Target proximity Domains. +# +# For more information of @NumaHmatLBOptions see +# the chapter 5.2.27.4: Table 5-142 of ACPI 6.3 spec. +# +# @initiator: the Initiator Proximity Domain. +# +# @target: the Target Proximity Domain. +# +# @hierarchy: the Memory Hierarchy. Indicates the performance +# of memory or side cache. +# +# @data-type: presents the type of data, access/read/write +# latency or hit latency. +# +# @latency: the value of latency from @initiator to @target proximity domain, +# the latency units are "ps(picosecond)", "ns(nanosecond)" or +# "us(microsecond)". +# +# @bandwidth: the value of bandwidth between @initiator and @target proximity +# domain, the bandwidth units are "MB(/s)","GB(/s)" or "PB(/s)". +# +# Since: 4.2 +## +{ 'struct': 'NumaHmatLBOptions', + 'data': { + 'initiator': 'uint16', + 'target': 'uint16', + 'hierarchy': 'HmatLBMemoryHierarchy', + 'data-type': 'HmatLBDataType', + '*latency': 'str', + '*bandwidth': 'str' }} + ## # @HostMemPolicy: # diff --git a/qemu-options.hx b/qemu-options.hx index c480781992..cda4607f3a 100644 --- a/qemu-options.hx +++ b/qemu-options.hx @@ -164,16 +164,19 @@ DEF("numa", HAS_ARG, QEMU_OPTION_numa, "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n" "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n" "-numa dist,src=source,dst=destination,val=distance\n" - "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n", + "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n" + "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n", QEMU_ARCH_ALL) STEXI @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}] @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}] @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance} @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}] +@itemx -numa hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{str},data-type=@var{str}[,latency=@var{lat}][,bandwidth=@var{bw}] @findex -numa Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA distance from a source node to a destination node. +Set the ACPI Heterogeneous Memory Attributes for the given nodes. Legacy VCPU assignment uses @samp{cpus} option where @var{firstcpu} and @var{lastcpu} are CPU indexes. Each @@ -250,6 +253,45 @@ specified resources, it just assigns existing resources to NUMA nodes. This means that one still has to use the @option{-m}, @option{-smp} options to allocate RAM and VCPUs respectively. +Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information +between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory Table (HMAT). +Initiator NUMA node can create memory requests, usually including one or more processors. +Target NUMA node contains addressable memory. + +In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{str} of 'hierarchy' +is the memory hierarchy of the target NUMA node: if @var{str} is 'memory', the structure +represents the memory performance; if @var{str} is 'first-level|second-level|third-level', +this structure represents aggregated performance of memory side caches for each domain. +@var{str} of 'data-type' is type of data represented by this structure instance: +if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' latency(picoseconds) +or 'access|read|write' bandwidth(MB/s) of the target memory; if 'hierarchy' is +'first-level|second-level|third-level', 'data-type' is 'access|read|write' hit latency(picoseconds) +or 'access|read|write' hit bandwidth of the target memory side cache. + +@var{lat} of 'latency' is latency value, the possible value and units are +NUM[ps|ns|us] (picosecond|nanosecond|microsecond), default unit is 'ps'. @var{bw} +is bandwidth value, the possible value and units are NUM[M|G|P], mean that +the bandwidth value are NUM MB/s, GB/s or PB/s. Note that max NUM is 65534, +if NUM is 0, means the corresponding latency or bandwidth information is not provided. + +For example, the following option assigns NUMA node 0 and 1. Node 0 has 2 cpus and +a ram, node 1 has only a ram. The processors in node 0 access memory in node +0 with access-latency 5 nanoseconds, access-bandwidth is 200 MB/s; +The processors in NUMA node 0 access memory in NUMA node 1 with access-latency 10 +nanoseconds, access-bandwidth is 100 MB/s. +@example +-m 2G \ +-object memory-backend-ram,size=1024M,policy=bind,host-nodes=0,id=ram-node0 -numa node,nodeid=0,memdev=ram-node0 \ +-object memory-backend-ram,size=1024M,policy=bind,host-nodes=1,id=ram-node1 -numa node,nodeid=1,memdev=ram-node1 \ +-smp 2 \ +-numa cpu,node-id=0,socket-id=0 \ +-numa cpu,node-id=0,socket-id=1 \ +-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5ns \ +-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \ +-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10ns \ +-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M \ +@end example + ETEXI DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd, -- 2.20.1