These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the swabbing is different than it is for fpsmid because the vector format is a little-endian stream of words.
Signed-off-by: Andrew Jones <drjo...@redhat.com> --- target/arm/kvm64.c | 150 +++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 146 insertions(+), 4 deletions(-) diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c index 0b004d5d3050..f5c99984f25f 100644 --- a/target/arm/kvm64.c +++ b/target/arm/kvm64.c @@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs) bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) { /* Return true if the regidx is a register we should synchronize - * via the cpreg_tuples array (ie is not a core reg we sync by - * hand in kvm_arch_get/put_registers()) + * via the cpreg_tuples array (ie is not a core or sve reg that + * we sync by hand in kvm_arch_get/put_registers()) */ switch (regidx & KVM_REG_ARM_COPROC_MASK) { case KVM_REG_ARM_CORE: + case KVM_REG_ARM64_SVE: return false; default: return true; @@ -761,6 +762,85 @@ static int kvm_arch_put_fpsimd(CPUState *cs) return 0; } +/* + * SVE registers are encoded in KVM's memory in an endianness-invariant format. + * The byte at offset i from the start of the in-memory representation contains + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the + * lowest offsets are stored in the lowest memory addresses, then that nearly + * matches QEMU's representation, which is to use an array of host-endian + * uint64_t's, where the lower offsets are at the lower indices. To complete + * the translation we just need to byte swap the uint64_t's on big-endian hosts. + */ +#ifdef HOST_WORDS_BIGENDIAN +static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) +{ + int i; + + for (i = 0; i < nr; ++i) { + dst[i] = bswap64(src[i]); + } + + return dst; +} +#endif + +/* + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard + * code the slice index to zero for now as it's unlikely we'll need more than + * one slice for quite some time. + */ +static int kvm_arch_put_sve(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; +#ifdef HOST_WORDS_BIGENDIAN + uint64_t tmp[ARM_MAX_VQ * 2]; +#endif + uint64_t *r; + struct kvm_one_reg reg; + int n, ret; + + for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { + r = &env->vfp.zregs[n].d[0]; +#ifdef HOST_WORDS_BIGENDIAN + r = sve_bswap64(tmp, r, cpu->sve_max_vq * 2); +#endif + reg.addr = (uintptr_t)r; + reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret) { + return ret; + } + } + + for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { + r = &env->vfp.pregs[n].p[0]; +#ifdef HOST_WORDS_BIGENDIAN + r = sve_bswap64(tmp, r, DIV_ROUND_UP(cpu->sve_max_vq, 8)); +#endif + reg.addr = (uintptr_t)r; + reg.id = KVM_REG_ARM64_SVE_PREG(n, 0); + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret) { + return ret; + } + } + + r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; +#ifdef HOST_WORDS_BIGENDIAN + r = sve_bswap64(tmp, r, DIV_ROUND_UP(cpu->sve_max_vq, 8)); +#endif + reg.addr = (uintptr_t)r; + reg.id = KVM_REG_ARM64_SVE_FFR(0); + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret) { + return ret; + } + + return 0; +} + int kvm_arch_put_registers(CPUState *cs, int level) { struct kvm_one_reg reg; @@ -855,7 +935,11 @@ int kvm_arch_put_registers(CPUState *cs, int level) } } - ret = kvm_arch_put_fpsimd(cs); + if (cpu_isar_feature(aa64_sve, cpu)) { + ret = kvm_arch_put_sve(cs); + } else { + ret = kvm_arch_put_fpsimd(cs); + } if (ret) { return ret; } @@ -918,6 +1002,60 @@ static int kvm_arch_get_fpsimd(CPUState *cs) return 0; } +/* + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard + * code the slice index to zero for now as it's unlikely we'll need more than + * one slice for quite some time. + */ +static int kvm_arch_get_sve(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + struct kvm_one_reg reg; + uint64_t *r; + int n, ret; + + for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { + r = &env->vfp.zregs[n].d[0]; + reg.addr = (uintptr_t)r; + reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret) { + return ret; + } +#ifdef HOST_WORDS_BIGENDIAN + sve_bswap64(r, r, cpu->sve_max_vq * 2); +#endif + } + + for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { + r = &env->vfp.pregs[n].p[0]; + reg.addr = (uintptr_t)r; + reg.id = KVM_REG_ARM64_SVE_PREG(n, 0); + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret) { + return ret; + } +#ifdef HOST_WORDS_BIGENDIAN + sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq, 8)); +#endif + } + + r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; + reg.addr = (uintptr_t)r; + reg.id = KVM_REG_ARM64_SVE_FFR(0); + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret) { + return ret; + } +#ifdef HOST_WORDS_BIGENDIAN + sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq, 8)); +#endif + + return 0; +} + int kvm_arch_get_registers(CPUState *cs) { struct kvm_one_reg reg; @@ -1012,7 +1150,11 @@ int kvm_arch_get_registers(CPUState *cs) env->spsr = env->banked_spsr[i]; } - ret = kvm_arch_get_fpsimd(cs); + if (cpu_isar_feature(aa64_sve, cpu)) { + ret = kvm_arch_get_sve(cs); + } else { + ret = kvm_arch_get_fpsimd(cs); + } if (ret) { return ret; } -- 2.20.1