We can now add float16_mul and use the common decompose and canonicalize functions to have a single implementation for float16/32/64 versions.
Signed-off-by: Alex Bennée <alex.ben...@linaro.org> --- fpu/softfloat.c | 207 ++++++++++++++++++------------------------------ include/fpu/softfloat.h | 1 + 2 files changed, 80 insertions(+), 128 deletions(-) diff --git a/fpu/softfloat.c b/fpu/softfloat.c index f89e47e3ef..6e9d4c172c 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -730,6 +730,85 @@ float64 float64_sub(float64 a, float64 b, float_status *status) return float64_round_pack_canonical(pr, status); } +/* + * Returns the result of multiplying the floating-point values `a' and + * `b'. The operation is performed according to the IEC/IEEE Standard + * for Binary Floating-Point Arithmetic. + */ + +static decomposed_parts mul_decomposed(decomposed_parts a, decomposed_parts b, + float_status *s) +{ + bool sign = a.sign ^ b.sign; + + if (a.cls == float_class_normal && b.cls == float_class_normal) { + uint64_t hi, lo; + int exp = a.exp + b.exp; + + mul64To128(a.frac, b.frac, &hi, &lo); + shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); + if (lo & DECOMPOSED_OVERFLOW_BIT) { + shift64RightJamming(lo, 1, &lo); + exp += 1; + } + + /* Re-use a */ + a.exp = exp; + a.sign = sign; + a.frac = lo; + return a; + } + /* handle all the NaN cases */ + if (a.cls >= float_class_qnan || b.cls >= float_class_qnan) { + return pick_nan_parts(a, b, s); + } + /* Inf * Zero == NaN */ + if (((1 << a.cls) | (1 << b.cls)) == + ((1 << float_class_inf) | (1 << float_class_zero))) { + s->float_exception_flags |= float_flag_invalid; + a.cls = float_class_dnan; + a.sign = sign; + return a; + } + /* Multiply by 0 or Inf */ + if (a.cls == float_class_inf || a.cls == float_class_zero) { + a.sign = sign; + return a; + } + if (b.cls == float_class_inf || b.cls == float_class_zero) { + b.sign = sign; + return b; + } + g_assert_not_reached(); +} + +float16 float16_mul(float16 a, float16 b, float_status *status) +{ + decomposed_parts pa = float16_unpack_canonical(a, status); + decomposed_parts pb = float16_unpack_canonical(b, status); + decomposed_parts pr = mul_decomposed(pa, pb, status); + + return float16_round_pack_canonical(pr, status); +} + +float32 float32_mul(float32 a, float32 b, float_status *status) +{ + decomposed_parts pa = float32_unpack_canonical(a, status); + decomposed_parts pb = float32_unpack_canonical(b, status); + decomposed_parts pr = mul_decomposed(pa, pb, status); + + return float32_round_pack_canonical(pr, status); +} + +float64 float64_mul(float64 a, float64 b, float_status *status) +{ + decomposed_parts pa = float64_unpack_canonical(a, status); + decomposed_parts pb = float64_unpack_canonical(b, status); + decomposed_parts pr = mul_decomposed(pa, pb, status); + + return float64_round_pack_canonical(pr, status); +} + /*---------------------------------------------------------------------------- | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | and 7, and returns the properly rounded 32-bit integer corresponding to the @@ -2542,70 +2621,6 @@ float32 float32_round_to_int(float32 a, float_status *status) } -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the single-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_mul(float32 a, float32 b, float_status *status) -{ - flag aSign, bSign, zSign; - int aExp, bExp, zExp; - uint32_t aSig, bSig; - uint64_t zSig64; - uint32_t zSig; - - a = float32_squash_input_denormal(a, status); - b = float32_squash_input_denormal(b, status); - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN(a, b, status); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if (bSig) { - return propagateFloat32NaN(a, b, status); - } - if ( ( aExp | aSig ) == 0 ) { - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x7F; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 ); - zSig = zSig64; - if ( 0 <= (int32_t) ( zSig<<1 ) ) { - zSig <<= 1; - --zExp; - } - return roundAndPackFloat32(zSign, zExp, zSig, status); - -} /*---------------------------------------------------------------------------- | Returns the result of dividing the single-precision floating-point value `a' @@ -4138,70 +4153,6 @@ float64 float64_trunc_to_int(float64 a, float_status *status) return res; } - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the double-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_mul(float64 a, float64 b, float_status *status) -{ - flag aSign, bSign, zSign; - int aExp, bExp, zExp; - uint64_t aSig, bSig, zSig0, zSig1; - - a = float64_squash_input_denormal(a, status); - b = float64_squash_input_denormal(b, status); - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { - return propagateFloat64NaN(a, b, status); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( bExp == 0x7FF ) { - if (bSig) { - return propagateFloat64NaN(a, b, status); - } - if ( ( aExp | aSig ) == 0 ) { - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x3FF; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - mul64To128( aSig, bSig, &zSig0, &zSig1 ); - zSig0 |= ( zSig1 != 0 ); - if ( 0 <= (int64_t) ( zSig0<<1 ) ) { - zSig0 <<= 1; - --zExp; - } - return roundAndPackFloat64(zSign, zExp, zSig0, status); - -} - /*---------------------------------------------------------------------------- | Returns the result of dividing the double-precision floating-point value `a' | by the corresponding value `b'. The operation is performed according to diff --git a/include/fpu/softfloat.h b/include/fpu/softfloat.h index 3238916aba..1fe8734261 100644 --- a/include/fpu/softfloat.h +++ b/include/fpu/softfloat.h @@ -348,6 +348,7 @@ float64 float16_to_float64(float16 a, flag ieee, float_status *status); float16 float16_add(float16, float16, float_status *status); float16 float16_sub(float16, float16, float_status *status); +float16 float16_mul(float16, float16, float_status *status); int float16_is_quiet_nan(float16, float_status *status); int float16_is_signaling_nan(float16, float_status *status); -- 2.15.1