Hi Michael, On 2016/9/1 21:27, Michael S. Tsirkin wrote:
> On Thu, Sep 01, 2016 at 02:58:05PM +0800, l00371263 wrote: >> From: "Longpeng(Mike)" <longpe...@huawei.com> >> >> Some software algorithms are based on the hardware's cache info, for example, >> for x86 linux kernel, when cpu1 want to wakeup a task on cpu2, cpu1 will >> trigger >> a resched IPI and told cpu2 to do the wakeup if they don't share low level >> cache. Oppositely, cpu1 will access cpu2's runqueue directly if they share >> llc. >> The relevant linux-kernel code as bellow: >> >> static void ttwu_queue(struct task_struct *p, int cpu) >> { >> struct rq *rq = cpu_rq(cpu); >> ...... >> if (... && !cpus_share_cache(smp_processor_id(), cpu)) { >> ...... >> ttwu_queue_remote(p, cpu); /* will trigger RES IPI */ >> return; >> } >> ...... >> ttwu_do_activate(rq, p, 0); /* access target's rq directly */ >> ...... >> } >> >> In real hardware, the cpus on the same socket share L3 cache, so one won't >> trigger a resched IPIs when wakeup a task on others. But QEMU doesn't >> present a >> virtual L3 cache info for VM, then the linux guest will trigger lots of RES >> IPIs >> under some workloads even if the virtual cpus belongs to the same virtual >> socket. >> >> For KVM, this degrades performance, because there will be lots of vmexit due >> to >> guest send IPIs. >> >> The workload is a SAP HANA's testsuite, we run it one round(about 40 >> minuates) >> and observe the (Suse11sp3)Guest's amounts of RES IPIs which triggering >> during >> the period: >> >> No-L3 With-L3(applied this patch) >> cpu0: 363890 44582 >> cpu1: 373405 43109 >> cpu2: 340783 43797 >> cpu3: 333854 43409 >> cpu4: 327170 40038 >> cpu5: 325491 39922 >> cpu6: 319129 42391 >> cpu7: 306480 41035 >> cpu8: 161139 32188 >> cpu9: 164649 31024 >> cpu10: 149823 30398 >> cpu11: 149823 32455 >> cpu12: 164830 35143 >> cpu13: 172269 35805 >> cpu14: 179979 33898 >> cpu15: 194505 32754 >> avg: 268963.6 40129.8 >> >> The VM's topology is "1*socket 8*cores 2*threads". >> After present virtual L3 cache info for VM, the amounts of RES IPI in guest >> reduce 85%. >> >> And we also test the overall system performance if vcpus actually run on >> sparate physical sockets. With L3 cache, the performance improves 7.2%~33.1% >> (avg: 15.7%). > > Any idea why? I'm guessing that on bare metal, it is > sometimes cheaper to send IPIs with a separate cache, but on KVM, > it is always cheaper to use memory, as this reduces the # of exits. > Is this it? Yeah, I think so, vmexit due to vcpu send IPIs is expensive. > > It's worth listing here so that e.g. if it ever becomes possible to send > IPIs without exits, we know we need to change this code. > OK! I will add in next version. >> Signed-off-by: Longpeng(Mike) <longpe...@huawei.com> >> --- >> Hi Eduardo, >>` >> Changes since v1: >> - fix the compat problem: set compat_props on PC_COMPAT_2_7. >> - fix a "intentionally introducde bug": make intel's and amd's >> consistently. >> - fix the CPUID.(EAX=4, ECX=3):EAX[25:14]. >> - test the performance if vcpus running on sparate sockets: with L3 cache, >> the performance improves 7.2%~33.1%(avg: 15.7%). >> --- >> include/hw/i386/pc.h | 8 ++++++++ >> target-i386/cpu.c | 49 ++++++++++++++++++++++++++++++++++++++++++++----- >> target-i386/cpu.h | 3 +++ >> 3 files changed, 55 insertions(+), 5 deletions(-) >> >> diff --git a/include/hw/i386/pc.h b/include/hw/i386/pc.h >> index 74c175c..6072625 100644 >> --- a/include/hw/i386/pc.h >> +++ b/include/hw/i386/pc.h >> @@ -367,7 +367,15 @@ int e820_add_entry(uint64_t, uint64_t, uint32_t); >> int e820_get_num_entries(void); >> bool e820_get_entry(int, uint32_t, uint64_t *, uint64_t *); >> >> +#define PC_COMPAT_2_7 \ >> + {\ >> + .driver = TYPE_X86_CPU,\ >> + .property = "compat-cache",\ >> + .value = "on",\ >> + }, >> + >> #define PC_COMPAT_2_6 \ >> + PC_COMPAT_2_7 \ >> HW_COMPAT_2_6 \ >> {\ >> .driver = "fw_cfg_io",\ > > > Could this get a more informative name? > E.g. l3-cache-shared ? Thanks! I will take your suggestion in next version. > >> diff --git a/target-i386/cpu.c b/target-i386/cpu.c >> index 6a1afab..224d967 100644 >> --- a/target-i386/cpu.c >> +++ b/target-i386/cpu.c >> @@ -57,6 +57,7 @@ >> #define CPUID_2_L1D_32KB_8WAY_64B 0x2c >> #define CPUID_2_L1I_32KB_8WAY_64B 0x30 >> #define CPUID_2_L2_2MB_8WAY_64B 0x7d >> +#define CPUID_2_L3_16MB_16WAY_64B 0x4d >> >> >> /* CPUID Leaf 4 constants: */ >> @@ -131,11 +132,18 @@ >> #define L2_LINES_PER_TAG 1 >> #define L2_SIZE_KB_AMD 512 >> >> -/* No L3 cache: */ >> +/* Level 3 unified cache: */ >> #define L3_SIZE_KB 0 /* disabled */ >> #define L3_ASSOCIATIVITY 0 /* disabled */ >> #define L3_LINES_PER_TAG 0 /* disabled */ >> #define L3_LINE_SIZE 0 /* disabled */ >> +#define L3_N_LINE_SIZE 64 >> +#define L3_N_ASSOCIATIVITY 16 >> +#define L3_N_SETS 16384 >> +#define L3_N_PARTITIONS 1 >> +#define L3_N_DESCRIPTOR CPUID_2_L3_16MB_16WAY_64B >> +#define L3_N_LINES_PER_TAG 1 >> +#define L3_N_SIZE_KB_AMD 16384 >> >> /* TLB definitions: */ >> >> @@ -2275,6 +2283,7 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, >> uint32_t count, >> { >> X86CPU *cpu = x86_env_get_cpu(env); >> CPUState *cs = CPU(cpu); >> + uint32_t pkg_offset; >> >> /* test if maximum index reached */ >> if (index & 0x80000000) { >> @@ -2328,7 +2337,11 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, >> uint32_t count, >> } >> *eax = 1; /* Number of CPUID[EAX=2] calls required */ >> *ebx = 0; >> - *ecx = 0; >> + if (cpu->enable_compat_cache) { >> + *ecx = 0; >> + } else { >> + *ecx = L3_N_DESCRIPTOR; >> + } >> *edx = (L1D_DESCRIPTOR << 16) | \ >> (L1I_DESCRIPTOR << 8) | \ >> (L2_DESCRIPTOR); >> @@ -2374,6 +2387,25 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, >> uint32_t count, >> *ecx = L2_SETS - 1; >> *edx = CPUID_4_NO_INVD_SHARING; >> break; >> + case 3: /* L3 cache info */ >> + if (cpu->enable_compat_cache) { >> + *eax = 0; >> + *ebx = 0; >> + *ecx = 0; >> + *edx = 0; >> + break; >> + } >> + *eax |= CPUID_4_TYPE_UNIFIED | \ >> + CPUID_4_LEVEL(3) | \ >> + CPUID_4_SELF_INIT_LEVEL; >> + pkg_offset = apicid_pkg_offset(cs->nr_cores, >> cs->nr_threads); >> + *eax |= ((1 << pkg_offset) - 1) << 14; >> + *ebx = (L3_N_LINE_SIZE - 1) | \ >> + ((L3_N_PARTITIONS - 1) << 12) | \ >> + ((L3_N_ASSOCIATIVITY - 1) << 22); >> + *ecx = L3_N_SETS - 1; >> + *edx = CPUID_4_INCLUSIVE | CPUID_4_COMPLEX_IDX; >> + break; >> default: /* end of info */ >> *eax = 0; >> *ebx = 0; >> @@ -2585,9 +2617,15 @@ void cpu_x86_cpuid(CPUX86State *env, uint32_t index, >> uint32_t count, >> *ecx = (L2_SIZE_KB_AMD << 16) | \ >> (AMD_ENC_ASSOC(L2_ASSOCIATIVITY) << 12) | \ >> (L2_LINES_PER_TAG << 8) | (L2_LINE_SIZE); >> - *edx = ((L3_SIZE_KB/512) << 18) | \ >> - (AMD_ENC_ASSOC(L3_ASSOCIATIVITY) << 12) | \ >> - (L3_LINES_PER_TAG << 8) | (L3_LINE_SIZE); >> + if (cpu->enable_compat_cache) { >> + *edx = ((L3_SIZE_KB / 512) << 18) | \ >> + (AMD_ENC_ASSOC(L3_ASSOCIATIVITY) << 12) | \ >> + (L3_LINES_PER_TAG << 8) | (L3_LINE_SIZE); >> + } else { >> + *edx = ((L3_N_SIZE_KB_AMD / 512) << 18) | \ >> + (AMD_ENC_ASSOC(L3_N_ASSOCIATIVITY) << 12) | \ >> + (L3_N_LINES_PER_TAG << 8) | (L3_N_LINE_SIZE); >> + } >> break; >> case 0x80000007: >> *eax = 0; >> @@ -3364,6 +3402,7 @@ static Property x86_cpu_properties[] = { >> DEFINE_PROP_STRING("hv-vendor-id", X86CPU, hyperv_vendor_id), >> DEFINE_PROP_BOOL("cpuid-0xb", X86CPU, enable_cpuid_0xb, true), >> DEFINE_PROP_BOOL("lmce", X86CPU, enable_lmce, false), >> + DEFINE_PROP_BOOL("compat-cache", X86CPU, enable_compat_cache, false), >> DEFINE_PROP_END_OF_LIST() >> }; >> >> diff --git a/target-i386/cpu.h b/target-i386/cpu.h >> index 65615c0..61ef4e3 100644 >> --- a/target-i386/cpu.h >> +++ b/target-i386/cpu.h >> @@ -1202,6 +1202,9 @@ struct X86CPU { >> */ >> bool enable_lmce; >> >> + /* Compatibility bits for old machine types */ >> + bool enable_compat_cache; >> + >> /* Compatibility bits for old machine types: */ >> bool enable_cpuid_0xb; >> >> -- >> 1.8.3.1 >> > > . > -- Regards, Longpeng(Mike)