Il 20/06/2013 18:46, Richard Henderson ha scritto: > On 06/20/2013 08:00 AM, Paolo Bonzini wrote: >> static inline Int128 int128_sub(Int128 a, Int128 b) >> { >> - return int128_add(a, int128_neg(b)); >> + uint64_t lo = a.lo - b.lo; >> + return (Int128) { lo, (lo < a.lo) + a.hi - b.hi }; > > This one isn't right. Consider { 2, 0 } - { 2, 0 } > > lo = 2 - 2 = 0; > = { 0, (0 < 2) + 0 - 0 } > = { 0, 1 } > > I'd be happier with a more traditional > > (Int128){ a.lo - b.lo, a.hi - b.hi - (a.lo < b.lo) };
Yeah, I wasn't quite sure of this and I was waiting for testcases to prove me wrong... To fix it in the style I used you need (Int128){ lo, a.hi - b.hi - (lo > a.lo) } (We have to sum a + ~b + 1. We have lo = a.lo + ~b.lo + 1, from which the carry-out is either lo <= a.lo or lo <= ~b.lo, using <= because of the carry-in. Then the high part is a.hi + ~b.hi + (lo <= a.lo) = a.hi + (-1 - b.hi) + 1 - (lo > a.lo) = a.hi - b.hi - (lo > a.lo) ). But I'll go with your version, it probably generates better code too. Paolo