Hao Xiang <hao.xi...@bytedance.com> writes: > * Add a DSA task completion callback. > * DSA completion thread will call the tasks's completion callback > on every task/batch task completion. > * DSA submission path to wait for completion. > * Implement CPU fallback if DSA is not able to complete the task. > > Signed-off-by: Hao Xiang <hao.xi...@bytedance.com> > Signed-off-by: Bryan Zhang <bryan.zh...@bytedance.com> > --- > include/qemu/dsa.h | 14 +++++ > util/dsa.c | 153 ++++++++++++++++++++++++++++++++++++++++++++- > 2 files changed, 164 insertions(+), 3 deletions(-) > > diff --git a/include/qemu/dsa.h b/include/qemu/dsa.h > index b10e7b8fb7..3f8ee07004 100644 > --- a/include/qemu/dsa.h > +++ b/include/qemu/dsa.h > @@ -65,6 +65,20 @@ void buffer_zero_batch_task_init(struct > buffer_zero_batch_task *task, > */ > void buffer_zero_batch_task_destroy(struct buffer_zero_batch_task *task); > > +/** > + * @brief Performs buffer zero comparison on a DSA batch task asynchronously. > + * > + * @param batch_task A pointer to the batch task. > + * @param buf An array of memory buffers. > + * @param count The number of buffers in the array. > + * @param len The buffer length. > + * > + * @return Zero if successful, otherwise non-zero. > + */ > +int > +buffer_is_zero_dsa_batch_async(struct buffer_zero_batch_task *batch_task, > + const void **buf, size_t count, size_t len); > + > /** > * @brief Initializes DSA devices. > * > diff --git a/util/dsa.c b/util/dsa.c > index 3cc017b8a0..06c6fbf2ca 100644 > --- a/util/dsa.c > +++ b/util/dsa.c > @@ -470,6 +470,41 @@ poll_completion(struct dsa_completion_record *completion, > return 0; > } > > +/** > + * @brief Use CPU to complete a single zero page checking task. > + * > + * @param task A pointer to the task. > + */ > +static void > +task_cpu_fallback(struct buffer_zero_batch_task *task) > +{ > + assert(task->task_type == DSA_TASK); > + > + struct dsa_completion_record *completion = &task->completions[0]; > + const uint8_t *buf; > + size_t len; > + > + if (completion->status == DSA_COMP_SUCCESS) { > + return; > + } > + > + /* > + * DSA was able to partially complete the operation. Check the > + * result. If we already know this is not a zero page, we can > + * return now. > + */ > + if (completion->bytes_completed != 0 && completion->result != 0) { > + task->results[0] = false; > + return; > + } > + > + /* Let's fallback to use CPU to complete it. */ > + buf = (const uint8_t *)task->descriptors[0].src_addr; > + len = task->descriptors[0].xfer_size; > + task->results[0] = buffer_is_zero(buf + completion->bytes_completed, > + len - completion->bytes_completed); > +} > + > /** > * @brief Complete a single DSA task in the batch task. > * > @@ -548,6 +583,62 @@ poll_batch_task_completion(struct buffer_zero_batch_task > *batch_task) > } > } > > +/** > + * @brief Use CPU to complete the zero page checking batch task. > + * > + * @param batch_task A pointer to the batch task. > + */ > +static void > +batch_task_cpu_fallback(struct buffer_zero_batch_task *batch_task) > +{ > + assert(batch_task->task_type == DSA_BATCH_TASK); > + > + struct dsa_completion_record *batch_completion = > + &batch_task->batch_completion; > + struct dsa_completion_record *completion; > + uint8_t status; > + const uint8_t *buf; > + size_t len; > + bool *results = batch_task->results; > + uint32_t count = batch_task->batch_descriptor.desc_count; > + > + // DSA is able to complete the entire batch task. > + if (batch_completion->status == DSA_COMP_SUCCESS) { > + assert(count == batch_completion->bytes_completed); > + return; > + } > + > + /* > + * DSA encounters some error and is not able to complete > + * the entire batch task. Use CPU fallback. > + */ > + for (int i = 0; i < count; i++) { > + completion = &batch_task->completions[i]; > + status = completion->status; > + if (status == DSA_COMP_SUCCESS) { > + continue; > + } > + assert(status == DSA_COMP_PAGE_FAULT_NOBOF); > + > + /* > + * DSA was able to partially complete the operation. Check the > + * result. If we already know this is not a zero page, we can > + * return now. > + */ > + if (completion->bytes_completed != 0 && completion->result != 0) { > + results[i] = false; > + continue; > + } > + > + /* Let's fallback to use CPU to complete it. */ > + buf = (uint8_t *)batch_task->descriptors[i].src_addr; > + len = batch_task->descriptors[i].xfer_size; > + results[i] = > + buffer_is_zero(buf + completion->bytes_completed, > + len - completion->bytes_completed);
Here the same thing is happening as in other patches, the batch task operation is just a repeat of the task operation n times. So this whole inner code here could be nicely replaced by task_cpu_fallback() with some adjustment of the function arguments. That makes intuitive sense and removes code duplication. > + } > +} > + > /** > * @brief Handles an asynchronous DSA batch task completion. > * > @@ -825,7 +916,6 @@ buffer_zero_batch_task_set(struct buffer_zero_batch_task > *batch_task, > * > * @return int Zero if successful, otherwise an appropriate error code. > */ > -__attribute__((unused)) > static int > buffer_zero_dsa_async(struct buffer_zero_batch_task *task, > const void *buf, size_t len) > @@ -844,7 +934,6 @@ buffer_zero_dsa_async(struct buffer_zero_batch_task *task, > * @param count The number of buffers. > * @param len The buffer length. > */ > -__attribute__((unused)) > static int > buffer_zero_dsa_batch_async(struct buffer_zero_batch_task *batch_task, > const void **buf, size_t count, size_t len) > @@ -876,13 +965,29 @@ buffer_zero_dsa_completion(void *context) > * > * @param batch_task A pointer to the buffer zero comparison batch task. > */ > -__attribute__((unused)) > static void > buffer_zero_dsa_wait(struct buffer_zero_batch_task *batch_task) > { > qemu_sem_wait(&batch_task->sem_task_complete); > } > > +/** > + * @brief Use CPU to complete the zero page checking task if DSA > + * is not able to complete it. > + * > + * @param batch_task A pointer to the batch task. > + */ > +static void > +buffer_zero_cpu_fallback(struct buffer_zero_batch_task *batch_task) > +{ > + if (batch_task->task_type == DSA_TASK) { > + task_cpu_fallback(batch_task); > + } else { > + assert(batch_task->task_type == DSA_BATCH_TASK); > + batch_task_cpu_fallback(batch_task); > + } > +} > + > /** > * @brief Check if DSA is running. > * > @@ -956,6 +1061,41 @@ void dsa_cleanup(void) > dsa_device_group_cleanup(&dsa_group); > } > > +/** > + * @brief Performs buffer zero comparison on a DSA batch task asynchronously. > + * > + * @param batch_task A pointer to the batch task. > + * @param buf An array of memory buffers. > + * @param count The number of buffers in the array. > + * @param len The buffer length. > + * > + * @return Zero if successful, otherwise non-zero. > + */ > +int > +buffer_is_zero_dsa_batch_async(struct buffer_zero_batch_task *batch_task, > + const void **buf, size_t count, size_t len) > +{ > + if (count <= 0 || count > batch_task->batch_size) { > + return -1; > + } > + > + assert(batch_task != NULL); > + assert(len != 0); > + assert(buf != NULL); > + > + if (count == 1) { > + // DSA doesn't take batch operation with only 1 task. > + buffer_zero_dsa_async(batch_task, buf[0], len); > + } else { > + buffer_zero_dsa_batch_async(batch_task, buf, count, len); > + } > + > + buffer_zero_dsa_wait(batch_task); > + buffer_zero_cpu_fallback(batch_task); > + > + return 0; > +} > + > #else > > void buffer_zero_batch_task_init(struct buffer_zero_batch_task *task, > @@ -981,5 +1121,12 @@ void dsa_stop(void) {} > > void dsa_cleanup(void) {} > > +int > +buffer_is_zero_dsa_batch_async(struct buffer_zero_batch_task *batch_task, > + const void **buf, size_t count, size_t len) > +{ > + exit(1); > +} > + > #endif