Below is the code to/from Boolean arrays and Unsigned integers. On my Pentium 4, functions such as "bitwise_and" are 32 times faster when run on 32-bit integers instead of the entire-byte-consuming-Boolean.
Good luck all:-) uint32Mask = numarray.array([0x00000001,0x00000002,0x00000004,0x00000008, \ 0x00000010,0x00000020,0x00000040,0x00000080, \ 0x00000100,0x00000200,0x00000400,0x00000800, \ 0x00001000,0x00002000,0x00004000,0x00008000, \ 0x00010000,0x00020000,0x00040000,0x00080000, \ 0x00100000,0x00200000,0x00400000,0x00800000, \ 0x01000000,0x02000000,0x04000000,0x08000000, \ 0x10000000,0x20000000,0x40000000,0x80000000], numarray.UInt32) uint32MaskInner = numarray.copy.deepcopy(uint32Mask) uint32MaskInner.shape = [32,1] uint32MaskOuter = numarray.copy.deepcopy(uint32Mask) uint32MaskOuter.shape = [1,32] def BoolToUInt32(myArr): if myArr.size()%32 != 0: print "Size is: ", myArr.size() return numarray.matrixmultiply(numarray.reshape(myArr,[myArr.size()/32,32]),uint32MaskInner).flat def UInt32ToBool(myArr,destination=None): if destination == None: destination = numarray.zeros([myArr.size()*32],numarray.Bool) #return numarray.bitwise_and(numarray.reshape(myArr,[myArr.size(),1]),uint32MaskOuter).flat #else: destination.shape = [myArr.size(),32] numarray.bitwise_and(numarray.reshape(myArr,[myArr.size(),1]),uint32MaskOuter,destination) destination.shape = [destination.size()] return destination Test of code: >>> import numarray >>> gram.UInt32ToBool(ni) array([1, 0, 0, ..., 0, 0, 0], type=Bool) >>> numarray.all(numarray.equal(n,gram.UInt32ToBool(gram.BoolToUInt32(n)))) 1 >>> n array([1, 0, 0, ..., 0, 0, 0], type=Bool) >>> n.shape (1024,) >>> numarray.all(numarray.equal(n,gram.UInt32ToBool(gram.BoolToUInt32(n)))) 1 -- http://mail.python.org/mailman/listinfo/python-list