Hi, a lot of people think that C (or C++) is faster than python, yes I agree, but I think that's not the case with numpy, I believe numpy is faster than C, at least in some cases.
*Is there another explanation ?Or where can find a doc speaking about the subject?*Thanks a lot Regards Numpy implements vectorization for arrays, or I'm wrong. Anyway here is an example Let's look at the following case: Here is the result on my laptop i3: Labs$ *python3 tempsExe.py 50000* sum with Python: 1250025000 and NumPy 1250025000 time used Python Sum: * 37.28 sec * time used Numpy Sum: *1.85 sec* Labs$ *./tt 50000 * * CPU time :7.521730* * The value : 1250025000 * *This is the Python3 program :import timeit as itimport numpy as npimport systry : n=eval(sys.argv[1])except: print ("needs integer as argument") ; exit() a=range(1,n+1)b=np.array(a)def func1(): return sum(a)def func2(): return np.sum(b)print(f"sum with Python: {func1()} and NumPy {func2()} ")tm1=it.timeit(stmt=func1, number=n)print(f"time used Python Sum: {round(tm1,2)} sec")tm2=it.timeit(stmt=func2, number=n)print(f"time used Numpy Sum: {round(tm2,2)} sec")* *and Here the C program:#include <time.h>#include <stdio.h>#include <stdlib.h>long func1(int n){ long r=0; for (int i=1; i<= n;i++) r+= i; return r;}int main(int argc, char* argv[]){ clock_t c0, c1; long v,count; int n; if ( argc < 2) { printf("Please give an argument"); return -1; } n=atoi(argv[1]); c0 = clock();* * for (int j=0;j < n;j++) v=func1(n); c1 = clock(); printf ("\tCPU time :%.2f sec", (float)(c1 - c0)/CLOCKS_PER_SEC); printf("\n\tThe value : %ld\n", v);}* -- https://mail.python.org/mailman/listinfo/python-list