But the end-result is still very weak: % Wall 33810 ms, gc 980 ms, 284108 lips
This is below 1 million LIPS. The JavaScript version of Dogelog does currently around 2 million LIPS. And SWI-Prolog can do around 20 million LIPS. Mostowski Collapse schrieb am Mittwoch, 15. September 2021 um 23:29:48 UTC+2: > Thank you for the suggestion. The test harness > is invoked as follows. So it does already do time/1, > thats also how I did the comparison Standard Python > > and GraalVM Python, a file dogelog.py: > > import sys > # sys.path.append("<path>\jekrun_bench\core\harness2\libpy") > sys.path.append("/mnt/c/<path>/jekrun_bench/core/harness2/libpy") > from index import init, consult > > init() > consult(":- ['suite2.p']. " > ":- time(suite). " > ":- nl. " > ":- time(suite). ") > > Here you see a GraalVM cold and warm run.The warm run is faster. > If you do a warm warm run, it even gets more faster, because of > JIT-ing, Just-in-Time machine compilation, > > via the GraalVM Truffles framework: > > $ export PATH=<path>/graalvm-ce-java8-21.2.0/bin:$PATH > $ cd /mnt/c/<path>/jekrun_bench/core/harness2 > $ graalpython /mnt/c/<path>/jekrun_bench/core/harness2/dogelog.py > nrev % Wall 6175 ms, gc 212 ms, 154473 lips > crypt % Wall 9327 ms, gc 63 ms, 112838 lips > deriv % Wall 4101 ms, gc 90 ms, 321890 lips > poly % Wall 3594 ms, gc 415 ms, 216299 lips > sortq % Wall 3427 ms, gc 67 ms, 290070 lips > tictac % Wall 2770 ms, gc 51 ms, 136580 lips > queens % Wall 3287 ms, gc 64 ms, 325617 lips > query % Wall 1432 ms, gc 77 ms, 382969 lips > mtak % Wall 2532 ms, gc 95 ms, 533881 lips > perfect % Wall 3980 ms, gc 76 ms, 290382 lips > % Wall 40745 ms, gc 1212 ms, 235751 lips > > nrev % Wall 4508 ms, gc 112 ms, 211595 lips > crypt % Wall 6063 ms, gc 61 ms, 173584 lips > deriv % Wall 3150 ms, gc 42 ms, 419070 lips > poly % Wall 3549 ms, gc 432 ms, 219042 lips > sortq % Wall 3196 ms, gc 63 ms, 311036 lips > tictac % Wall 2670 ms, gc 52 ms, 141695 lips > queens % Wall 3087 ms, gc 60 ms, 346713 lips > query % Wall 1434 ms, gc 25 ms, 382435 lips > mtak % Wall 2596 ms, gc 90 ms, 520719 lips > perfect % Wall 3521 ms, gc 43 ms, 328236 lips > % Wall 33810 ms, gc 980 ms, 284108 lips > DFS schrieb am Mittwoch, 15. September 2021 um 23:15:07 UTC+2: > > On 9/15/2021 12:23 PM, Mostowski Collapse wrote: > > > I really wonder why my Python implementation > > > is a factor 40 slower than my JavaScript implementation. > > > Structurally its the same code. > > > > > > You can check yourself: > > > > > > Python Version: > > > https://github.com/jburse/dogelog-moon/blob/main/devel/runtimepy/machine.py > > > > > > > > > JavaScript Version: > > > https://github.com/jburse/dogelog-moon/blob/main/devel/runtime/machine.js > > > > > > Its the same while, if-then-else, etc.. its the same > > > classes Variable, Compound etc.. Maybe I could speed > > > it up by some details. For example to create an array > > > of length n, I use in Python: > > > > > > temp = [NotImplemented] * code[pos] > > > pos += 1 > > > > > > Whereas in JavaScript I use, also > > > in exec_build2(): > > > > > > temp = new Array(code[pos++]); > > > > > > So I hear Guido doesn't like ++. So in Python I use += > > > and a separate statement as a workaround. But otherwise, > > > what about the creation of an array, > > > > > > is the the idiom [_] * _ slow? I am assuming its > > > compiled away. Or does it really first create an > > > array of size 1 and then enlarge it? > > I'm sure you know you can put in timing statements to find bottlenecks. > > > > import time > > startTime = time.perf_counter() > > [code block] > > print("%.2f" % (time.perf_counter() - startTime)) -- https://mail.python.org/mailman/listinfo/python-list