J Conrado wrote: > > > > > > > > > > > > HI, > > > I have an excel file with several columns, the first day/month,/year and > hour: > > > Data > 01/11/2017 00:00 > 01/11/2017 03:00 > 01/11/2017 06:00 > 01/11/2017 09:00 > 01/11/2017 12:00 > 01/11/2017 15:00 > 01/11/2017 18:00 > 01/11/2017 21:00 > 02/11/2017 00:00 > 02/11/2017 03:00 > 02/11/2017 06:00 > 02/11/2017 09:00 > 02/11/2017 12:00 > 02/11/2017 15:00 > 02/11/2017 18:00 > 02/11/2017 21:00 > 03/11/2017 00:00 > 03/11/2017 03:00 > 03/11/2017 06:00 > 03/11/2017 09:00 > 03/11/2017 12:00 > 03/11/2017 15:00 > 03/11/2017 18:00 > 03/11/2017 21:00 > 04/11/2017 00:00 > 04/11/2017 03:00 > 04/11/2017 06:00 > 04/11/2017 09:00 > 04/11/2017 12:00 > 04/11/2017 15:00 > 04/11/2017 18:00 > 04/11/2017 21:00 > 05/11/2017 00:00 > 05/11/2017 03:00 > 05/11/2017 06:00 > 05/11/2017 09:00 > 05/11/2017 12:00 > 05/11/2017 15:00 > 05/11/2017 18:00 > 05/11/2017 21:00 > 06/11/2017 00:00 > 06/11/2017 03:00 > 06/11/2017 06:00 > 06/11/2017 09:00 > 06/11/2017 12:00 > 06/11/2017 15:00 > 06/11/2017 18:00 > 06/11/2017 21:00 > 07/11/2017 00:00 > 07/11/2017 03:00 > 07/11/2017 06:00 > 07/11/2017 09:00 > 07/11/2017 12:00 > 07/11/2017 15:00 > 07/11/2017 18:00 > 07/11/2017 21:00 > 08/11/2017 00:00 > 08/11/2017 03:00 > 08/11/2017 06:00 > 08/11/2017 09:00 > 08/11/2017 12:00 > 08/11/2017 15:00 > 08/11/2017 21:00 > 09/11/2017 00:00 > 09/11/2017 03:00 > 09/11/2017 06:00 > 09/11/2017 09:00 > 09/11/2017 12:00 > 09/11/2017 15:00 > 09/11/2017 18:00 > 09/11/2017 21:00 > 10/11/2017 00:00 > 10/11/2017 03:00 > 10/11/2017 06:00 > 10/11/2017 09:00 > 10/11/2017 12:00 > 10/11/2017 15:00 > 10/11/2017 18:00 > 10/11/2017 21:00 > 11/11/2017 00:00 > 11/11/2017 03:00 > 11/11/2017 06:00 > 11/11/2017 09:00 > 11/11/2017 12:00 > 11/11/2017 15:00 > 11/11/2017 18:00 > 11/11/2017 21:00 > 12/11/2017 00:00 > 12/11/2017 03:00 > 12/11/2017 06:00 > 12/11/2017 09:00 > 12/11/2017 12:00 > 12/11/2017 15:00 > 12/11/2017 18:00 > 12/11/2017 21:00 > 13/11/2017 00:00 > 13/11/2017 03:00 > 13/11/2017 06:00 > 13/11/2017 09:00 > 13/11/2017 12:00 > 13/11/2017 15:00 > 13/11/2017 18:00 > 13/11/2017 21:00 > 14/11/2017 00:00 > 14/11/2017 03:00 > 14/11/2017 06:00 > 14/11/2017 09:00 > 14/11/2017 12:00 > 14/11/2017 15:00 > 14/11/2017 18:00 > 14/11/2017 21:00 > 15/11/2017 00:00 > 15/11/2017 03:00 > 15/11/2017 06:00 > 15/11/2017 09:00 > 15/11/2017 12:00 > 15/11/2017 15:00 > 15/11/2017 18:00 > 15/11/2017 21:00 > 16/11/2017 00:00 > 16/11/2017 03:00 > 16/11/2017 06:00 > 16/11/2017 09:00 > 16/11/2017 12:00 > 16/11/2017 15:00 > 16/11/2017 18:00 > 16/11/2017 21:00 > 17/11/2017 00:00 > 17/11/2017 03:00 > 17/11/2017 06:00 > 17/11/2017 09:00 > 17/11/2017 12:00 > 17/11/2017 15:00 > 17/11/2017 18:00 > 18/11/2017 00:00 > 18/11/2017 03:00 > 18/11/2017 06:00 > 18/11/2017 09:00 > 18/11/2017 12:00 > 18/11/2017 15:00 > 18/11/2017 18:00 > 18/11/2017 21:00 > 19/11/2017 00:00 > 19/11/2017 03:00 > 19/11/2017 06:00 > 19/11/2017 09:00 > 19/11/2017 12:00 > 19/11/2017 15:00 > 19/11/2017 18:00 > 19/11/2017 21:00 > 20/11/2017 00:00 > 20/11/2017 03:00 > 20/11/2017 06:00 > 20/11/2017 09:00 > 20/11/2017 12:00 > 20/11/2017 15:00 > 20/11/2017 18:00 > 20/11/2017 21:00 > 21/11/2017 00:00 > 21/11/2017 03:00 > 21/11/2017 06:00 > 21/11/2017 09:00 > 21/11/2017 12:00 > 21/11/2017 15:00 > 21/11/2017 18:00 > 22/11/2017 03:00 > 22/11/2017 06:00 > 22/11/2017 09:00 > 22/11/2017 12:00 > 22/11/2017 15:00 > 22/11/2017 18:00 > 22/11/2017 21:00 > 23/11/2017 00:00 > 23/11/2017 03:00 > 23/11/2017 06:00 > 23/11/2017 09:00 > 23/11/2017 12:00 > 23/11/2017 15:00 > 23/11/2017 18:00 > 23/11/2017 21:00 > 24/11/2017 00:00 > 24/11/2017 03:00 > 24/11/2017 06:00 > 24/11/2017 09:00 > 24/11/2017 12:00 > 24/11/2017 15:00 > 24/11/2017 18:00 > 24/11/2017 21:00 > 25/11/2017 00:00 > 25/11/2017 03:00 > 25/11/2017 06:00 > 25/11/2017 09:00 > 25/11/2017 12:00 > 25/11/2017 15:00 > 25/11/2017 18:00 > 25/11/2017 21:00 > 26/11/2017 00:00 > 26/11/2017 03:00 > 26/11/2017 06:00 > 26/11/2017 09:00 > 26/11/2017 12:00 > 26/11/2017 15:00 > 26/11/2017 18:00 > 26/11/2017 21:00 > 27/11/2017 03:00 > 27/11/2017 06:00 > 27/11/2017 09:00 > 27/11/2017 12:00 > 27/11/2017 15:00 > 27/11/2017 18:00 > 27/11/2017 21:00 > 28/11/2017 06:00 > 28/11/2017 09:00 > 28/11/2017 12:00 > 28/11/2017 15:00 > 28/11/2017 18:00 > 28/11/2017 21:00 > 29/11/2017 00:00 > 29/11/2017 03:00 > 29/11/2017 06:00 > 29/11/2017 09:00 > 29/11/2017 12:00 > 29/11/2017 15:00 > 29/11/2017 18:00 > 29/11/2017 21:00 > 30/11/2017 00:00 > 30/11/2017 03:00 > 30/11/2017 06:00 > 30/11/2017 09:00 > 30/11/2017 12:00 > 30/11/2017 15:00 > 30/11/2017 18:00 > 30/11/2017 21:00 > > > This is the value tha a have using pandas: > > > print(data) > > > 0 2017-01-11 00:00:00 > 1 2017-01-11 03:00:00 > 2 2017-01-11 06:00:00 > 3 2017-01-11 09:00:00 > 4 2017-01-11 12:00:00 > ... > 228 2017-11-30 09:00:00 > 229 2017-11-30 12:00:00 > 230 2017-11-30 15:00:00 > 231 2017-11-30 18:00:00 > 232 2017-11-30 21:00:00 > > Please, how can I get four arrays for day, month, year and hour this > column of my excel.
df["year"] = df["timestamp"].apply(lambda ts: ts.year) A self-contained demonstration: $ cat tmp.py import pandas as pd import operator # Create sample data. df = pd.DataFrame({ "timestamp": pd.date_range("2020-01-01 01:00", periods=5) }) print(df) # Extract "year" etc. attributes from the "timestamp" column # into the year etc. columns. for name in "year month day hour".split(): df[name] = df["timestamp"].apply(operator.attrgetter(name)) # Remove "timestamp" column. del df["timestamp"] print(df) $ python3 tmp.py timestamp 0 2020-01-01 01:00:00 1 2020-01-02 01:00:00 2 2020-01-03 01:00:00 3 2020-01-04 01:00:00 4 2020-01-05 01:00:00 [5 rows x 1 columns] year month day hour 0 2020 1 1 1 1 2020 1 2 1 2 2020 1 3 1 3 2020 1 4 1 4 2020 1 5 1 [5 rows x 4 columns] $ -- https://mail.python.org/mailman/listinfo/python-list