Okay, I found some answer myself: use scipy.optimize.curve_fit However, I still find it strange that I have to define a gauss function myself instead of it being readily available. I did this:
# Define model function to be used to fit to the data def gauss(x, *p): A, mu, sigma = p return A*np.exp(-(x-mu)**2/(2.*sigma**2)) p0 = [1., 0., 1.] # Fit the histogram ----------------------------- coeff, var_matrix = curve_fit(gauss, x_array, y_array, p0=p0) amplitude, mu, sigma = coeff print "amplitude, mu, sigma = ", amplitude, mu, sigma # Get the fitted curve hist_fit = gauss(x_array, *coeff) plt.plot(x_array, hist_fit, color='red', linewidth=5, label='Fitted data') plt.show() -- Avís - Aviso - Legal Notice - (LOPD) - http://legal.ifae.es <http://legal.ifae.es/> -- https://mail.python.org/mailman/listinfo/python-list